login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037280
If n is composite replace n with the concatenation of its nontrivial divisors [ A037279 ] then divide out any factors of 2.
1
1, 1, 3, 1, 5, 23, 7, 3, 3, 25, 11, 1173, 13, 27, 35, 31, 17, 2369, 19, 12255, 37, 211, 23, 586703, 5, 213, 39, 12357, 29, 23561015, 31, 1551, 311, 217, 57, 117345609, 37, 219, 313, 6145255, 41, 23671421, 43, 120561, 35915, 223, 47, 2933515203, 7, 251025, 317
OFFSET
1,3
EXAMPLE
Divisors of 12 are 1,2,3,4,6,12, so 12 -> 2346 = 2*1173 -> 1173 = a(12).
MAPLE
with(numtheory):ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1), j=1..nops(s))):end: a:=proc(n) options remember: local d, i, l, m: if n<3 then RETURN(1) else if not isprime(n) then d:=divisors(n): l:=nops(d): m:=ds([seq(op(convert(d[l-i+1], base, 10)), i=2..l-1)]): RETURN(m/piecewise(m mod 2=1, 1, 2^(ifactors(m)[2][1][2]))) else RETURN(n) fi fi: end; seq(a(n), n=1..70); # C. Ronaldo
CROSSREFS
Cf. A037279.
Sequence in context: A039512 A140825 A265981 * A352009 A324204 A168611
KEYWORD
nonn,easy,base
EXTENSIONS
More terms from Erich Friedman
STATUS
approved