login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes that divide at least one term of Sylvester's sequence s = A000058: s(n+1) = s(n)^2 - s(n) + 1, s(0) = 2.
14

%I #53 Nov 28 2024 11:14:56

%S 2,3,7,13,43,73,139,181,547,607,1033,1171,1459,1861,1987,2029,2287,

%T 2437,4219,4519,6469,7603,8221,9829,12763,13147,13291,13999,15373,

%U 17881,17977,19597,20161,20479,20641,20857,20929,21661,23689,23773,27031

%N Primes that divide at least one term of Sylvester's sequence s = A000058: s(n+1) = s(n)^2 - s(n) + 1, s(0) = 2.

%C Or, let S_1 = [2] and let S_{n+1} = list formed by sorting the union of S_n together with all prime factors of 1 + Product_i S_n(i) into increasing order; sequence is limit as n -> infinity of S_n.

%C Prime divisors of the terms of Sylvester's sequence A000058. - _Max Alekseyev_, Jan 03 2004. Also of A007018. - _N. J. A. Sloane_, Jan 27 2007

%C Because all terms of the sequence s(n) are coprime, a prime can divide at most one term. Odoni shows that primes p > 3 in this sequence must satisfy p = 1 (mod 6). - _T. D. Noe_, Sep 25 2010

%C See A180871(n) for the index of the first term of A000058 (this is one less than the index of the s-sequence) divisible by a(n). - _M. F. Hasler_, Apr 24 2014

%H Max Alekseyev, <a href="/A007996/b007996.txt">Table of n, a(n) for n = 1..12046</a> (first 8181 terms are also given at the Andersen link)

%H J. K. Andersen, <a href="http://primerecords.dk/sylvester-factors.htm">Factorization of Sylvester's sequence</a>

%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012

%H R. W. K. Odoni, <a href="http://jlms.oxfordjournals.org/content/s2-32/1/1.extract">On the prime divisors of the sequence w_{n+1} = 1+w_1 ... w_n</a>, J. London Math. Soc. 32 (1985), 1-11.

%H Filip Saidak, <a href="http://www.jstor.org/stable/27642094">A New Proof of Euclid's Theorem</a>, Amer. Math. Monthly, Dec 2006

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SylvestersSequence.html">Sylvester's sequence</a>

%p n := 1; for p do if isprime(p) then x := 2 mod p; S := {}; while not member(x,S) do if x=0 then a[n] := p; n := n+1; break; fi; S := S union {x}; x := (x^2-x+1) mod p; od; fi; od;

%t t={}; p=1; While[Length[t]<100, p=NextPrime[p]; s=Mod[2,p]; k=0; modSet={}; While[s>0 && !MemberQ[modSet,s], AppendTo[modSet,s]; k++; s=Mod[s^2-s+1,p]]; If[s==0, AppendTo[t,{p,k}]]]; Transpose[t][[1]] (* _T. D. Noe_, Sep 25 2010 *)

%o (PARI) is(n)=my(k=Mod(2,n)); for(i=1, n, k=(k-1)*k+1; if(k==0, return(isprime(n)))); n==2 \\ _Charles R Greathouse IV_, Sep 30 2015

%Y The missing primes form A096264.

%Y Cf. A014546, A091335, A091336.

%Y Cf. A180871 (k such that a(n) divides A000058(k)).

%Y Cf. A323605 (smallest prime dividing A000058(n)).

%K nonn

%O 1,1

%A Bennett Battaile (bennett.battaile(AT)autodesk.com)

%E More terms from _Max Alekseyev_, Jan 03 2004

%E Entry revised by _N. J. A. Sloane_, Jan 28 2007

%E Definition corrected (following a remark by _Don Reble_) by _M. F. Hasler_, Apr 24 2014