OFFSET
0,1
COMMENTS
The prime numbers a(n) are all distinct, which proves the infinitude of the prime numbers (Saidak's proof).
a(12) <= 2589377038614498251653. - Daniel Suteu, Jan 20 2019
a(12)..a(50) = [?, 52387, 13999, 17881, 128551, 635263, ?, ?, 352867, 387347773, ?, 74587, ?, ?, 27061, 164299, 20929, 1171, ?, 1679143, ?, ?, 120823, 2408563, 38218903, 333457, 30241, 4219, 1085443, 7603, 1861, ?, 23773, 51769, 1285540933, 429547, ?, 8323570543, ?], where ? denote unknown values > 10^10. - Max Alekseyev, Oct 11 2023
LINKS
Filip Saidak, A new proof of Euclid's theorem, Amer. Math. Monthly, 113:10 (2006) 937-938.
FORMULA
a(n) = A007996(m), where m is the smallest index such that A180871(m) = n. - Max Alekseyev, Oct 11 2023
MAPLE
with(numtheory):
u:=1: P:=NULL: to 9 do P:=P, sort([op(divisors(u+1))])[2]: u:=u*(u+1) od:
P;
PROG
(PARI) f(n)=if(n<1, n>=0, f(n-1)+f(n-1)^2); \\ A007018
a(n)=divisors(f(n)+1)[2]; \\ Michel Marcus, Jan 20 2019
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert FERREOL, Jan 19 2019
EXTENSIONS
a(10)-a(11) from Daniel Suteu, Jan 20 2019
STATUS
approved