login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A166948
The count of smallest prime factors in n-th composite.
1
2, 1, 3, 2, 1, 2, 1, 1, 4, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 5, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 4, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 6, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 4, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 5, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 2, 3, 1, 7, 1, 1, 2, 1, 1, 3, 3, 1, 2
OFFSET
1,1
EXAMPLE
a(1)=2 (4 = 2*2);
a(2)=1 (6 = 2*3);
a(3)=3 (8 = 2*2*2);
a(4)=2 (9 = 3*3).
MAPLE
A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
A166948 := proc(n) c := A002808(n) ; smpr := A020639(c) ; for p in ifactors(c)[2] do if op(1, p) = smpr then return op(2, p) ; end if; end do: end proc:
seq(A166948(n), n=1..120) ; # R. J. Mathar, May 21 2010
MATHEMATICA
FactorInteger[#][[1, 2]]&/@Select[Range[200], CompositeQ] (* Harvey P. Dale, Apr 20 2022 *)
CROSSREFS
Sequence in context: A103484 A016444 A280831 * A325532 A180075 A193865
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entries checked by R. J. Mathar, May 21 2010
STATUS
approved