OFFSET
1,4
COMMENTS
Rowland shows that the terms are all 1's or primes.
The prime terms form A137613.
See A137613 for additional comments, links and references. - Jonathan Sondow, Aug 14 2008
From Robert G. Wilson v, Apr 30 2009: (Start)
First appearance of k-th prime, k >= 0: 1, 0, 5, 4, 104, 10, 116, 242878, 242819, 22, 243019, 3891770, 242867, ..., .
The number of different numbers in the first 10^k terms beginning with k=0: 1, 4, 7, 12, 15, 19, 30, >35, ..., .
Record high values are A191304. (End)
REFERENCES
Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 .
Jean-Paul Delahaye, Déconcertantes conjectures, Pour la Science (French edition of Scientific American), No. 367, May 2008.
Brian Hayes, Pumping the Primes, bit-player, 19 August 2015.
Mario Raso, Integer Sequences in Cryptography: A New Generalized Family and its Application, Ph. D. Thesis, Univ. Bari (Italy 2025). See p. 18.
Eric S. Rowland, A natural prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
Eric S. Rowland, A simple prime-generating recurrence, 2008.
Eric S. Rowland, Prime-Generating Recurrences and a Tale of Logarithmic Scale, 20 January 2023.
MAPLE
A106108 := proc(n)
option remember;
if n = 1 then
7;
else
procname(n-1)+igcd(n, procname(n-1)) ;
end if;
end proc:
A132199 := proc(n)
end proc: # R. J. Mathar, Jul 04 2013
MATHEMATICA
a[1] = 7; a[n_] := a[n] = a[n - 1] + GCD[n, a[n - 1]]; t = Array[a, 104]; Rest@t - Most@t (* Robert G. Wilson v, Apr 30 2009 *)
PROG
(Haskell)
a132199 n = a132199_list !! (n-1)
a132199_list = zipWith (-) (tail a106108_list) a106108_list
-- Reinhard Zumkeller, Nov 15 2013
(PARI)
ub=1000; a=7; n=2; while(n<ub, d=gcd(n, a); print1(d, ", "); a=a+d; n=n+1; ); \\ Daniel Constantin Mayer, Aug 31 2014
(Python)
from itertools import count, islice
from math import gcd
def A132199_gen(): # generator of terms
a = 7
for n in count(2):
yield (b:=gcd(a, n))
a += b
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2008
STATUS
approved