login
A111142
a(n) = gcd(n, A113222(n)), where A113222(n) = Sum_{p^e || n} F(p^e), each p^e the highest power of prime p dividing n (with e > 0), and F(k) is the k-th Fibonacci number.
2
1, 1, 1, 1, 5, 3, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, 1, 1, 4, 3, 2, 1, 1, 25, 26, 1, 4, 1, 2, 1, 1, 1, 34, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 3, 46, 1, 1, 1, 2, 3, 4, 1, 3, 1, 2, 1, 2, 1, 10, 1, 2, 1, 1, 1, 2, 1, 4, 3, 1, 1, 1, 1, 74, 3, 4, 1, 2, 1, 16, 1, 2, 1, 6, 1, 86, 1, 22, 1, 10, 1, 4, 3, 94, 1, 1, 1, 2, 3
OFFSET
1,5
LINKS
EXAMPLE
12 = 2^2 * 3^1. So a(12) = GCD(12, F(2^2) + F(3^1)) = GCD(12, 5) = 1.
MATHEMATICA
f[n_] := GCD[n, Plus @@ (Fibonacci[ #[[1]]^#[[2]]] & /@ FactorInteger[n])]; Table[ f[n], {n, 99}] (* Robert G. Wilson v *)
PROG
(PARI)
A113222(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, fibonacci(f[i, 1]^f[i, 2])));
A111142(n) = gcd(n, A113222(n)); \\ Antti Karttunen, Jan 14 2025
CROSSREFS
Sequence in context: A265606 A368602 A132199 * A179626 A174965 A159671
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 18 2005
EXTENSIONS
More terms from Robert G. Wilson v, Oct 21 2005
STATUS
approved