login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111140
a(n) = (n!/(n+1))*Sum_{k=0..n} binomial(n+k-1,k)/k!.
1
1, 1, 3, 13, 71, 466, 3582, 31641, 316171, 3526606, 43421978, 584716386, 8544649478, 134622445348, 2274031087772, 40987164702945, 784981384215795, 15916200367695510, 340548893413909410, 7666975604019750630
OFFSET
0,3
LINKS
FORMULA
Recurrence: n*(n+1)*(n^3 - 12*n^2 + 37*n - 32)*a(n) = 2*n*(n^5 - 10*n^4 + 14*n^3 + 45*n^2 - 92*n + 30)*a(n-1) - (n-1)*(n^6 - 6*n^5 - 39*n^4 + 294*n^3 - 612*n^2 + 488*n - 120)*a(n-2) + 2*(n-3)*(n-2)*(n-1)*(2*n - 5)*(n^3 - 9*n^2 + 16*n - 6)*a(n-3). - Vaclav Kotesovec, Nov 27 2017
a(n) ~ exp(2*sqrt(n) - n + 1/2) * n^(n - 3/4) / sqrt(2) * (1 - 17/(48*sqrt(n))). - Vaclav Kotesovec, Nov 27 2017
MATHEMATICA
f[n_]:= n!/(n+1)*Sum[Binomial[n+k-1, k]/k!, {k, 0, n}]; Table[f[n], {n, 0, 10}] (* Robert G. Wilson v, Oct 21 2005 *)
PROG
(PARI) {a(n) = (n!/(n+1))*sum(k=0, n, binomial(n+k-1, k)/k!)};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Feb 07 2019
(Magma) [(Factorial(n)/(n+1))*(&+[Binomial(n+k-1, k)/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 07 2019
(Sage) [(factorial(n)/(n+1))*sum(binomial(n+k-1, k)/factorial(k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Feb 07 2019
(GAP) List([0..20], n-> (Factorial(n)/(n+1))*Sum([0..n], k-> Binomial(n+k-1, k)/Factorial(k)) ) # G. C. Greubel, Feb 07 2019
CROSSREFS
Sequence in context: A192239 A192936 A000261 * A302699 A137983 A327677
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Oct 17 2005
STATUS
approved