This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192936 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x)=(x+1)(x+2)...(x+n). 1
 1, 1, 3, 13, 71, 463, 3497, 29975, 287265, 3042545, 35284315, 444617525, 6048575335, 88347242335, 1378930649745, 22903345844335, 403342641729665, 7506843094993825, 147226845692229875, 3034786640911840925, 65592491119118514375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. Essentially the same as A192239.- R. J. Mathar, Aug 10 2011 LINKS FORMULA a(n) = 1/10*(5-sqrt(5))*GAMMA(n+3/2+1/2*sqrt(5))/GAMMA(3/2+1/2*sqrt(5)) - 1/10*(5+sqrt(5))*GAMMA(1/2*sqrt(5)-1/2)*sin(1/2*Pi*(5+sqrt(5)))*GAMMA(n+3/2-1/2*sqrt(5))/Pi. - Vaclav Kotesovec, Oct 26 2012 EXAMPLE The first four polynomials p(n,x) and their reductions are as follows: p(0,x)=1 p(1,x)=x+1 -> x+1 p(2,x)=(x+1)(x+2) -> 3+4x p(3,x)=(x+1)(x+2)(x+3) -> 13+19x From these, read A192936=(1,1,3,13,...) and A192239=(0,1,3,13,...) MATHEMATICA q = x^2; s = x + 1; z = 26; p[0, x] := 1; p[n_, x_] := (x + n)*p[n - 1, x]; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192936 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192239 *) CROSSREFS Cf. A192232, A192744, A192239. Sequence in context: A158882 A233824 A192239 * A000261 A111140 A137983 Adjacent sequences:  A192933 A192934 A192935 * A192937 A192938 A192939 KEYWORD nonn AUTHOR Clark Kimberling, Jul 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.