login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306183 The coefficients of x in the reduction of x^2 -> x + 1 for the polynomial p(n,x) = Product_{k=1..n} (x+k). 2
0, 1, 4, 19, 108, 719, 5496, 47465, 457160, 4858865, 56490060, 713165035, 9715762980, 142069257055, 2219386098160, 36889108220305, 650018185589520, 12103669982341025, 237476572759473300, 4896758300881695875, 105866710959427454300, 2394660132226522508975, 56560492065670933962600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See A192936 for the constant term of the reduction x^2 -> x + 1 for the polynomial p(n,x) = Product_{k=1..n} (x+k).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..445

FORMULA

a(n) = (-1)^(n+1)*Sum_{k=0..n+2} Stirling1(n+2,k)*A000045(k).

From Vaclav Kotesovec, Feb 09 2019: (Start)

a(n) = 2*n*a(n-1) - (n^2 - n - 1)*a(n-2).

a(n) = cos(Pi*sqrt(5)/2) * (Gamma(sqrt(5)*phi) * Gamma(n + 1/phi^2) / phi^2 - phi^2 * Gamma(sqrt(5)/phi) * Gamma(n + phi^2)) / (Pi*sqrt(5)).

a(n) ~ c * n! * n^phi, where c = -cos(sqrt(5)*Pi/2) * (5 + 3*sqrt(5)) * Gamma((5 - sqrt(5))/2) / (10*Pi) = 0.30858712435869... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. (End)

MATHEMATICA

Table[(-1)^(n+1)*Sum[StirlingS1[n+2, k]*Fibonacci[k], {k, 0, n+2}], {n, 0, 30}]

PROG

(PARI) {a(n) = (-1)^(n+1)*sum(k=0, n+2, stirling(n+2, k, 1)*fibonacci(k))};

vector(30, n, n--; a(n))

(Magma) [(-1)^(n+1)*(&+[StirlingFirst(n+2, k)*Fibonacci(k): k in [0..n+2]]): n in [0..30]];

(Sage) [sum((-1)^(k+1)*stirling_number1(n+2, k)*fibonacci(k) for k in (0..n+2)) for n in (0..30)]

CROSSREFS

Cf. A192936, A323620 (signed)

Sequence in context: A206227 A091643 A323620 * A241840 A199318 A117397

Adjacent sequences:  A306180 A306181 A306182 * A306184 A306185 A306186

KEYWORD

nonn

AUTHOR

G. C. Greubel, Feb 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 04:47 EST 2022. Contains 358353 sequences. (Running on oeis4.)