The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117397 Column 3 of triangle A117396. 1
 1, 4, 19, 109, 739, 5779, 51139, 504739, 5494339, 65369539, 843747139, 11741033539, 175200329539, 2790549065539, 47251477577539, 847548190793539, 16053185741897539, 320165936763977539, 6706533708227657539, 147206624680428617539, 3378708717041050697539 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Equals the partial sums of column 3 of triangle A092582. LINKS FORMULA G.f. satisfies A(x) = (1-x)/(1 - 5*x + 5*x^2) * (1 + x^2*A'(x)). a(n) = 1 + Sum_{k=4..n+3} k!*3/4! for n > 0, with a(0)=1. G.f.: W(0)/(8*x*(1-x)) -1/(4*x), where W(k) = 1 + 1/( 1 - x*(k+3)/( x*(k+3) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2013 G.f.: (Sum_{n>=0} (n+2)!*x^n)/(8*x*(1-x)) - 1/(4*x). - Sergei N. Gladkovskii, Aug 20 2013 EXAMPLE G.f.: A(x) = 1 + 4*x + 19*x^2 + 109*x^3 + 739*x^4 + 5779*x^5 + 51139*x^6 + 504739*x^7 + 5494339*x^8 + 65369539*x^9 + 843747139*x^10 + ... MAPLE a:=n->sum(j!/8, j=2..n): seq(a(n), n=3..21); # Zerinvary Lajos, Jan 08 2007 MATHEMATICA Table[Sum[i!/8, {i, 2, n}], {n, 3, 21}] (* Zerinvary Lajos, Jul 12 2009 *) PROG (PARI) {a(n)=1+sum(k=4, n+3, k!)*3/4!} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A117396 (triangle), A014288 (column 1), A056199 (column 2), A003422 (row sums); A092582. Sequence in context: A306183 A241840 A199318 * A004212 A243241 A060905 Adjacent sequences:  A117394 A117395 A117396 * A117398 A117399 A117400 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 11 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 22:55 EDT 2021. Contains 345016 sequences. (Running on oeis4.)