login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056199
a(n) = n * a(n-1) - Sum_{k=1..n-2} a(k) with a(1) = 0 and a(2) = 1.
5
0, 1, 3, 11, 51, 291, 1971, 15411, 136371, 1345971, 14651571, 174318771, 2249992371, 31309422771, 467200878771, 7441464174771, 126003940206771, 2260128508782771, 42808495311726771, 853775831370606771, 17884089888607086771, 392550999147809646771
OFFSET
1,3
LINKS
R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Section B44, Springer 2010.
FORMULA
a(1)=0, a(n) = (1/3)*Sum_{k=1..n} k! for n > 1. - Benoit Cloitre, Nov 12 2005
a(n) = A007489(n)/3 for n >= 2. - Philippe Deléham, Feb 10 2007
G.f.: x*(W(0)/(2-2*x)/3 -1/3), where W(k) = 1 + 1/( 1 - x*(k+2)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 20 2013
G.f.: 1/(3*(1-x)*Q(0)) - 1/3, m=+2, where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
Given g.f. A(x) = x^2*F(x), then F(x) = (1-x)/(1 - 4*x + 4*x^2) * (1 + x^2*F'(x)). - Paul D. Hanna, Jan 16 2019
a(n) = (n+1)*a(n-1) - n*a(n-2) for n >= 4, a(n) = n*(n-1)/2 for n < 4. - Alois P. Heinz, Aug 11 2019
MAPLE
a:= proc(n) option remember; `if`(n<4, n*(n-1)/2,
(n+1)*a(n-1) -n*a(n-2))
end:
seq(a(n), n=1..23); # Alois P. Heinz, Aug 11 2019
MATHEMATICA
a[1]=0; a[2]=1; a[n_Integer] := n*a[n-1]-Sum[a[k], {k, 1, n-2}]; Table[a[n], {n, 1, 22}]
Join[{0}, Table[Plus@@(Range[n]!) / 3, {n, 2, 25}]] (* Vincenzo Librandi, Jan 17 2019 *)
PROG
(Magma) [0] cat [&+[Factorial(i)/3: i in [1..n]]: n in [2..25]]; // Vincenzo Librandi, Jan 17 2019
CROSSREFS
Sequence in context: A357830 A184819 A113712 * A230008 A007047 A182176
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Sep 26 1996
EXTENSIONS
New name using a formula from Robert G. Wilson v. - Paul D. Hanna, Jan 17 2019
STATUS
approved