This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182176 Number of affine subspaces of GF(2)^n. 8
 1, 3, 11, 51, 307, 2451, 26387, 387987, 7866259, 221472147, 8703733139, 479243212179, 37070813107603, 4036214347068819, 619402703369958803, 134108807406166799763, 40994263184865380595091, 17700624176280878586721683, 10799420012335823235718509971 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS q-binomial transform of A000079 for q=2. - Vladimir Reshetnikov, Oct 17 2016 From Geoffrey Critzer, Jul 15 2017: (Start) a(n) is the total number of vectors in all subspaces of GF(2)^n. a(n) is the number of subspaces of GF(2)^(n+1) that do not contain a given nonzero vector. (End) LINKS Gaëtan Leurent, Table of n, a(n) for n = 0..100 Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018. FORMULA a(n) = Sum_{k=0..n} (2^n/2^k * Product_{i=0..k-1} (2^n - 2^i)/(2^k - 2^i)). G.f.: Sum_{n>=0} x^n / Product_{k=1..n+1} (1-2^k*x). - Paul D. Hanna, May 01 2012 a(n) ~ c * 2^((n+1)^2/4), where c = EllipticTheta[2, 0, 1/2] / QPochhammer[1/2, 1/2] = A242939 = 7.3719494907662273375414118336... if n is even, and c = EllipticTheta[3, 0, 1/2] / QPochhammer[1/2, 1/2] = A242938 = 7.3719688014613165091531912082... if n is odd. - Vaclav Kotesovec, Jun 22 2014 a(n)/[n]_q! is the coefficient of x^n in the expansion of (1 + x)*exp_q( x)*exp_q(x) when q->2 and where exp_q(x) is the q exponential function and [n]_q! is the q-factorial of n. - Geoffrey Critzer, Jul 15 2017 a(n) = (2^n - 1)*A006116(n-1) + A006116(n). - Geoffrey Critzer, Jul 15 2017 EXAMPLE For n=2, there are 4 affine subspaces of dimension 0, 6 of dimension 1, and 1 of dimension 2. MATHEMATICA Table[Sum[2^n/2^k * Product[(2^n-2^i)/(2^k-2^i), {i, 0, k-1}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 22 2014 *) Table[Sum[QBinomial[n, k, 2] 2^k, {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 17 2016 *) PROG (Sage) def a(n): return sum([(2^n/2^k)*prod([(2^n-2^i)/(2^k-2^i) for i in [0..k-1]]) for k in [0..n]]) (PARI) {a(n)=polcoeff(sum(m=0, n, x^m/prod(k=1, m+1, 1-2^k*x+x*O(x^n))), n)} /* Paul D. Hanna, May 01 2012 */ (GAP) List([0..20], n->Sum([0..n], k->(2^n/2^k*Product([0..k-1], i->(2^n-2^i)/(2^k-2^i))))); # Muniru A Asiru, Aug 01 2018 CROSSREFS Cf. A006116. Sequence in context: A056199 A230008 A007047 * A244754 A129097 A319155 Adjacent sequences:  A182173 A182174 A182175 * A182177 A182178 A182179 KEYWORD nonn,easy AUTHOR Gaëtan Leurent, Apr 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 08:49 EST 2019. Contains 329862 sequences. (Running on oeis4.)