login
A368602
Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
2
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
OFFSET
0,8
COMMENTS
Also the number of set-systems with n vertices and n edges such that {i} is a singleton edge iff i <= k, and such that there is only one way to choose a different vertex from each edge.
FORMULA
T(n,k) = A361718(n,k)/binomial(n,k).
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 5 3 1
0 79 33 7 1
0 3377 1071 161 15 1
...
Row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n]], {n}], Union@@Cases[#, {_}]==Range[k] && Length[Select[Tuples[#], UnsameQ@@#&]]==1&]], {n, 0, 3}, {k, 0, n}]
CROSSREFS
Column k = n-1 is A000225 = A058877(n)/n.
Column k = 1 is A134531 (up to sign) or A003025(n)/n, non-fixed A350415.
For any choice of k sinks we get A361718.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.
Sequence in context: A286127 A201654 A265606 * A132199 A111142 A179626
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 02 2024
EXTENSIONS
More terms from Alois P. Heinz, Jan 04 2024
STATUS
approved