login
A113222
a(n) = Sum_{p^e | n} F(p^e), where each p^e is the highest power of prime p dividing n (with e > 0), and F(k) is the k-th Fibonacci number.
3
0, 1, 2, 3, 5, 3, 13, 21, 34, 6, 89, 5, 233, 14, 7, 987, 1597, 35, 4181, 8, 15, 90, 28657, 23, 75025, 234, 196418, 16, 514229, 8, 1346269, 2178309, 91, 1598, 18, 37, 24157817, 4182, 235, 26, 165580141, 16, 433494437, 92, 39, 28658, 2971215073, 989, 7778742049, 75026, 1599, 236, 53316291173, 196419, 94, 34, 4183
OFFSET
1,3
LINKS
FORMULA
Additive with a(p^e) = A000045(p^e).
EXAMPLE
12 = 2^2 * 3^1. So a(12) = F(2^2) + F(3^1) = 3 + 2 = 5.
MAPLE
a:= n-> add(combinat[fibonacci](i[1]^i[2]), i=ifactors(n)[2]):
seq(a(n), n=1..50); # Alois P. Heinz, Jan 14 2025
MATHEMATICA
f[n_] := Plus @@ (Fibonacci[ #[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[ f[n], {n, 49}] (* Robert G. Wilson v *)
PROG
(PARI) A113222(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, fibonacci(f[i, 1]^f[i, 2]))); \\ Antti Karttunen, Jan 14 2025
CROSSREFS
Cf. A000045, A113177, A113195, A111142 [= gcd(n, a(n))].
Sequence in context: A272202 A244609 A209195 * A366671 A060444 A002587
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 18 2005
EXTENSIONS
More terms from Robert G. Wilson v, Oct 21 2005
Terms a(49..57) added, and the notation used in the definition simplified by Antti Karttunen, Jan 14 2025
STATUS
approved