login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113177
Fully additive with a(p) = Fibonacci(p); If, for p prime, p^(m_{n,p}) is the highest power of p dividing n with m>=0, then a(n) = Sum_{p prime} F(p)*(m_{n,p}), where F(p) = p-th Fibonacci number.
25
0, 1, 2, 2, 5, 3, 13, 3, 4, 6, 89, 4, 233, 14, 7, 4, 1597, 5, 4181, 7, 15, 90, 28657, 5, 10, 234, 6, 15, 514229, 8, 1346269, 5, 91, 1598, 18, 6, 24157817, 4182, 235, 8, 165580141, 16, 433494437, 91, 9, 28658, 2971215073, 6, 26, 11, 1599, 235, 53316291173, 7, 94
OFFSET
1,3
LINKS
FORMULA
Totally additive with a(p) = A000045(p).
EXAMPLE
12 = 2^2 * 3^1, so a(12) = F(2)*2 + F(3)*1 = 2 + 2 = 4.
MATHEMATICA
b[t_]:=Fibonacci[First[t]]Last[t] a[n_]:=Apply[Plus, Map[b, FactorInteger[n]]] (* Esa Peuha, Oct 26 2005 *)
PROG
(PARI) { for(n=1, 100, f=factor(n); s=0; for(i=1, matsize(f)[1], s+=fibonacci(f[i, 1])*f[i, 2]); print1(s, ", ")) } \\ Lambert Klasen, Oct 26 2005
(Sage) [0]+[sum([fibonacci(x[0])*x[1] for x in factor(n)]) for n in range(2, 56)] # Danny Rorabaugh, Apr 03 2015
CROSSREFS
Cf. A373586 (indices of even terms), A373587 (of odd terms), A374052 (of multiples of 3), A374206 (2-adic valuation), A374207 (3-adic valuation), A374208 (5-adic valuation), A374209 [A007895(a(n))], A374124 [a(n) mod 360].
Cf. A374106 [gcd(a(n), A328845(n))], A374112 [gcd(a(n), A276085(n))].
For other completely additive sequences see the cross-references in A001414.
Sequence in context: A190170 A147524 A374124 * A344507 A322786 A184243
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Oct 16 2005
EXTENSIONS
More terms from Esa Peuha (esa.peuha(AT)helsinki.fi) and Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 26 2005
Prefixed the name with a more succinct form of the definition given in comments. - Antti Karttunen, Jul 08 2024
STATUS
approved