OFFSET
0,2
COMMENTS
In general, 1/sqrt((1-a*x)^2-4*b*x^4) expands to Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*b^k*a^(n-4k).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*2^(n-3k).
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+2*sqrt(2)))^n / (sqrt(6+5*sqrt(2)-sqrt(70+56*sqrt(2))) * sqrt(Pi*n)). - Vaclav Kotesovec, Jun 23 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-2*x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
PROG
(PARI) x='x+O('x^50); Vec(1/sqrt((1-2*x)^2 - 8*x^4)) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2005
STATUS
approved