login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113180
Expansion of 1/sqrt((1-2*x)^2-8*x^4).
1
1, 2, 4, 8, 20, 56, 160, 448, 1240, 3440, 9632, 27200, 77216, 219840, 627200, 1793024, 5136480, 14743232, 42390400, 122064640, 351951232, 1015990528, 2936079360, 8493340672, 24591589120, 71262291456, 206666232832, 599778166784
OFFSET
0,2
COMMENTS
In general, 1/sqrt((1-a*x)^2-4*b*x^4) expands to Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*b^k*a^(n-4k).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-2k,k)*C(n-3k,k)*2^(n-3k).
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2) + 8*(n-2)*a(n-4). - Vaclav Kotesovec, Jun 23 2014
a(n) ~ (1+sqrt(1+2*sqrt(2)))^n / (sqrt(6+5*sqrt(2)-sqrt(70+56*sqrt(2))) * sqrt(Pi*n)). - Vaclav Kotesovec, Jun 23 2014
MATHEMATICA
CoefficientList[Series[1/Sqrt[(1-2*x)^2-8*x^4], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 23 2014 *)
PROG
(PARI) x='x+O('x^50); Vec(1/sqrt((1-2*x)^2 - 8*x^4)) \\ G. C. Greubel, Mar 17 2017
CROSSREFS
Sequence in context: A000980 A123611 A082279 * A000116 A302862 A344490
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 16 2005
STATUS
approved