OFFSET
1,3
LINKS
M. Bousquet, G. Labelle and P. Leroux, Enumeration of planar two-face maps, Discrete Math., vol. 222 (2000), 1-25.
FORMULA
a(n) = (1/n) Sum_{k|n} phi(k) C((n/k)-1,floor(n/(2k)))^2 where phi(k) is the Euler function A000010.
EXAMPLE
There exist 2 maps in the plane with two triangular faces: a triangle and a map consisting of a 2-path and a loop in its middle vertex that separates both ends. Therefore a(3) = 2.
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[n/# - 1, Floor[n/(2*#)]]^2 &] / n; Array[a, 30] (* Amiram Eldar, Aug 24 2023 *)
PROG
(PARI) a(n) = sumdiv(n, k, eulerphi(k)*binomial(n/k - 1, n\(2*k))^2)/n; \\ Michel Marcus, Oct 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, Oct 19 2005
STATUS
approved