login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073192
Number of general plane trees whose n-th subtree from the left is equal to the n-th subtree from the right, for all its subtrees (i.e., are palindromic in the shallow sense).
6
1, 1, 2, 3, 8, 18, 54, 155, 500, 1614, 5456, 18630, 64960, 228740, 814914, 2926323, 10589916, 38561814, 141219432, 519711666, 1921142832, 7129756188, 26555149404, 99228108222, 371886574632, 1397548389644, 5265131346368
OFFSET
0,3
COMMENTS
The Catalan bijection A057508 fixes only these kinds of trees, so this occurs in the table A073202 as row 168.
LINKS
FORMULA
a(n) = Sum_{i=0..n, (n-i) is even} Gat((n-i)/2)*Gat(i-1), where Gat(-1) = 1 and otherwise like A000108(n).
A073193(n) = (A000108(n) + A073192(n))/2.
MAPLE
A073192 := proc(n) local d; add( (`mod`((n-d+1), 2))*Cat((n-d)/2)*(`if`((0=d), 1, Cat(d-1))), d=0..n); end;
Cat := n -> binomial(2*n, n)/(n+1);
MATHEMATICA
a[n_] := Sum[Mod[n - k + 1, 2]*CatalanNumber[(n - k)/2]*If[k == 0, 1, CatalanNumber[k - 1]], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2016 *)
PROG
(PARI) Gat(n) = if (n == -1, 1, binomial(2*n, n)/(n+1));
a(n) = sum(i=0, n, if (!((n-i)%2), Gat((n-i)/2)*Gat(i-1))); \\ Michel Marcus, May 30 2018
CROSSREFS
Occurs for first time in A073202 as row 168.
Cf. also A073190.
Sequence in context: A185171 A339524 A158448 * A317722 A113183 A157015
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 25 2002
STATUS
approved