login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073190
Number of general plane trees which are either empty (the case a(0)), or whose root degree is either 1 (i.e., the planted trees) or the two leftmost subtrees (of the root node) are identical.
10
1, 1, 2, 3, 8, 20, 60, 181, 584, 1916, 6476, 22210, 77416, 272840, 971640, 3488925, 12621168, 45946156, 168206604, 618853270, 2286974856, 8485246456, 31596023208, 118037654258, 442287721872, 1661790513944, 6259494791096
OFFSET
0,3
COMMENTS
The Catalan bijection A072796 fixes only these kinds of trees, so this occurs in the table A073202 as row 1.
LINKS
FORMULA
a(0)=1, a(n) = Cat(n-1) + Sum_{i=0..n-2, (n-i) is even} Cat((n-i-2)/2)*Cat(i), where Cat(n) is A000108(n).
MAPLE
A073190 := proc(n) local d; Cat(n-1)+ add( (`mod`((n-d+1), 2))*Cat((n-d-2)/2)*Cat(d), d=0..n-2); end;
Cat := n -> binomial(2*n, n)/(n+1);
MATHEMATICA
a[n_] := CatalanNumber[n - 1] + Sum[Mod[n - d + 1, 2]*CatalanNumber[(n - d - 2)/2]*CatalanNumber[d], {d, 0, n - 2}]; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 06 2016 *)
PROG
(PARI) Cat(n) = binomial(2*n, n)/(n+1);
a(n) = if (n==0, 1, Cat(n-1) + sum(i=0, n-2, if (!((n-i)%2), Cat((n-i-2)/2)*Cat(i)))); \\ Michel Marcus, May 30 2018
CROSSREFS
Occurs for first time in A073202 as row 1. A073191(n) = (A000108(n)+A073190(n))/2. Cf. also A073192.
Sequence in context: A167123 A029895 A073268 * A066051 A056971 A108125
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 25 2002
STATUS
approved