The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029895 Number of partitions of floor(n^2/2) with at most n parts and maximal height n. 8
 1, 1, 2, 3, 8, 20, 58, 169, 526, 1667, 5448, 18084, 61108, 208960, 723354, 2527074, 8908546, 31630390, 113093022, 406680465, 1470597342, 5342750699, 19499227828, 71442850111, 262754984020, 969548468960, 3589093760726, 13323571588607, 49596793134484 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the maximum value for the distribution of partitions of (0 .. n^2) that fit in an n X n box; assuming the peak of a normal distribution 1/sqrt(variance*2*Pi) approximates to these partitions and using A068606 suggests C(2n,n)*sqrt(6/(Pi*n^2*(2n+1))) could be an approximation [within 0.3% for a(100)=88064925963069745337300842293630181021718294488842002448]; using Stirling's approximation gives the simpler (sqrt(3)/Pi)*4^n/n^2 [about 0.6% away for a(100)] though experimentation suggests that something like (sqrt(3)/Pi)*4^n/(n^2+3n/5+1/5) is closer [about 0.0001% away for a(100)]. - Henry Bottomley, Mar 13 2002 Bisection of A277218 with even indexes. - Vladimir Reshetnikov, Oct 09 2016 REFERENCES R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992. LINKS Vladimir Reshetnikov, Table of n, a(n) for n = 0..190 Eric W. Weisstein, q-Binomial Coefficient Wikipedia, q-binomial FORMULA Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser. Table[T[Floor[n^2/2], n, n], {n, 0, 36}] with T[ ] defined as in A047993. a(n)=A067059(n, n). a(n) equals the central coefficient of q in the central q-binomial coefficients for n>0: a(n) = [q^([n^2/2])] Product_{i=1..n} (1-q^(n+i))/(1-q^i), with a(0)=1. - Paul D. Hanna, Feb 15 2007 EXAMPLE a(4)=8 because the partitions of Floor[4^2 /2] that fit inside a 4 X 4 box are {4, 4}, {4, 3, 1}, {4, 2, 2}, {4, 2, 1, 1}, {3, 3, 2}, {3, 3, 1, 1}, {3, 2, 2, 1}, {2, 2, 2, 2}. MATHEMATICA Table[Coefficient[Expand[FunctionExpand[QBinomial[2 n, n, q]]], q, Floor[n^2/2]], {n, 0, 30}] (* Vladimir Reshetnikov, Oct 09 2016 *) PROG (PARI) {a(n)=if(n==0, 1, polcoeff(prod(i=1, n, (1-q^(n+i))/(1-q^i)), n^2\2, q))} \\ Paul D. Hanna, Feb 15 2007 CROSSREFS Cf. A000569, A004250, A004251, A029889, A047993, diagonal of A067059, A068607, A277218. Sequence in context: A254533 A095341 A167123 * A073268 A073190 A066051 Adjacent sequences: A029892 A029893 A029894 * A029896 A029897 A029898 KEYWORD nonn AUTHOR torsten.sillke(AT)lhsystems.com EXTENSIONS More terms and comments from Wouter Meeussen, Aug 14 2001 Edited by Henry Bottomley, Feb 17 2002 a(27)-a(28) from Alois P. Heinz, Oct 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)