login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029894 Number of directed (or Gale-Ryser) graphical partitions: degree-vector pairs (in-degree, out-degree) for directed graphs (loops allowed) with n vertices; or possible ordered pair (row-sum, column-sum) vectors for a 0-1 matrix. 3
1, 2, 7, 34, 221, 1736, 15584, 153228, 1611189, 17826202, 205282376, 2441437708, 29816628471, 372314544202, 4737438631001, 61264426341926, 803488037899349, 10668478221202710, 143203795004873285, 1940953294927992976, 26536578116407809962, 365653739580163294032 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
LINKS
Peter L. Erdos, I Miklós, Z Toroczkai, New classes of degree sequences with fast mixing swap Markov chain sampling, arXiv preprint arXiv:1601.08224 [math.CO], 2016.
FORMULA
Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(n) = F(n, n, 0, n) where F(b, c, t, w) = Sum_{i=0..b} Sum_{j=ceiling((t+i)/w))..min(t+i, c)} F(i, j, t+i-j, w-1) for w > 0, F(b, c, 0, 0) = 1 and F(b, c, t, 0) = 0 for t > 0. - Andrew Howroyd, Nov 01 2019
PROG
(PARI) \\ see A327913 for T(n, m)
for(n=0, 15, print1(T(n, n), ", ")) \\ Andrew Howroyd, Nov 01 2019
CROSSREFS
Main diagonal of A327913.
Sequence in context: A143740 A049463 A294466 * A110313 A000944 A136310
KEYWORD
nonn
AUTHOR
torsten.sillke(AT)lhsystems.com
EXTENSIONS
"Loops allowed" added to the definition by Brendan McKay, Oct 20 2015
a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Oct 31 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 13:22 EDT 2024. Contains 375730 sequences. (Running on oeis4.)