login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143740
E.g.f. satisfies A(x) = exp(x + x^2/2 * A(x)).
6
1, 1, 2, 7, 34, 216, 1696, 15898, 173468, 2161036, 30282076, 471599316, 8082816160, 151218316120, 3066890630168, 67031194526416, 1570793031033616, 39290173530686544, 1044871388684004304, 29440090627527552976
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: A(x) = -2*LambertW( -x^2*exp(x)/2 )/x^2.
E.g.f.: A(x) = Sum_{n>=0} (n+1)^(n-1)*(x^2/2)^n*exp((n+1)*x)/n!.
a(n) ~ sqrt(1+LambertW(1/sqrt(2*exp(1)))) * n^(n-1) /(2^(n+1/2) * exp(n) * (LambertW(1/sqrt(2*exp(1))))^(n+2)). - Vaclav Kotesovec, Jul 09 2013
Recurrence: a(0)=1, a(1)=1, for n > 1, a(n) = a(n-1) + Sum_{k=0..n-2} (n-1)*(n-k)*binomial(n-2,k)*a(k)*a(n-2-k)/2. - Tani Akinari, Nov 01 2017
From Seiichi Manyama, Apr 20 2023: (Start)
E.g.f.: exp(x - LambertW(-x^2/2 * exp(x))).
a(n) = n! * Sum_{k=0..floor(n/2)} (1/2)^k * (k+1)^(n-k-1) / (k! * (n-2*k)!). (End)
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 34*x^4/4! + 216*x^5/5! + ...
MATHEMATICA
CoefficientList[Series[-2*LambertW[-x^2*E^x/2]/x^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=0, n, A=exp(x+x^2*A/2)); (n+0)!*polcoeff(A, n)}
(PARI) {a(n)=local(A=sum(m=0, n, (m+1)^(m-1)*(x^2/2)^m*exp((m+1)*x+x*O(x^n))/m!)); n!*polcoeff(A, n)}
(PARI) {a(n)=local(Ex=exp(x+x*O(x^n)), W=Ex); for(k=0, n, W=exp(x*W)); n!*polcoeff(subst(W, x, x^2*Ex/2)*Ex, n)}
(Maxima) a[n]:=(if n<2 then 1 else a[n-1]+sum((n-1)*(n-k)*binomial(n-2, k)*a[k]*a[n-2-k], k, 0, n-2)/2);
makelist(a[n], n, 0, 100); /* Tani Akinari, Nov 01 2017 */
CROSSREFS
Column k=1 of A362377.
Cf. A125500.
Sequence in context: A185324 A135882 A376527 * A049463 A294466 A029894
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 30 2008
STATUS
approved