OFFSET
0,3
COMMENTS
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..301
FORMULA
a(n) ~ c * 16^n / n^(9/2), where c = 0.430217025951475334005904244213062400539... - Vaclav Kotesovec, Oct 11 2024
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 34*x^4 + 216*x^5 + 1610*x^6 + 13461*x^7 + 122254*x^8 + 1183568*x^9 + 12054498*x^10 + ...
where coefficient a(n) of x^n in A(x) equals the sum of the square of the terms in row n of triangle A227543, as follows.
a(0) = 1^2 = 1;
a(1) = 1^2 = 1;
a(2) = 1^2 + 1^2 = 2;
a(3) = 1^2 + 2^2 + 1^2 + 1^2 = 7;
a(4) = 1^2 + 3^2 + 3^2 + 3^2 + 2^2 + 1^2 + 1^2 = 34;
a(5) = 1^2 + 4^2 + 6^2 + 7^2 + 7^2 + 5^2 + 5^2 + 3^2 + 2^2 + 1^2 + 1^2 = 216;
a(6) = 1^2 + 5^2 + 10^2 + 14^2 + 17^2 + 16^2 + 16^2 + 14^2 + 11^2 + 9^2 + 7^2 + 5^2 + 3^2 + 2^2 + 1^2 + 1^2 = 1610;
...
PROG
(PARI) \\ From g.f. of A227543, F(x, q) = 1 + x*F(q*x, q)*F(x, q)
{A227543(n, k) = my(F=1); for(i=1, n, F = 1 + x*F*subst(F, x, q*x) +x*O(x^n)); polcoef(polcoef(F, n, x), k, q)}
{a(n) = sum(k=0, n*(n-1)/2, A227543(n, k)^2)}
for(n=0, 25, print1(a(n), ", "))
(PARI) \\ faster (using program by Joerg Arndt in A227543)
N=30;
VP=vector(N+1); VP[1] = VP[2] = 1; \\ one-based; memoization
P(n) = VP[n+1];
for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ); print1(n, ", ") );
for(n=0, N, AV=Vec(P(n)); print1(AV*AV~, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 11 2024
STATUS
approved