OFFSET
0,3
COMMENTS
Compare to the following cubic modular identity of Jacobi theta functions,
(3*H(q^9)/H(q) - 1)^3 = 9*H(q^3)^4/H(q)^4 - 1,
which holds for H(q) = theta_2(q), H(q) = theta_3(q), and H(q) = theta_4(q) (see Mathworld link).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..730
Weisstein, Eric W., Modular Equation. From MathWorld -- A Wolfram Web Resource.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 141*x^4 + 1045*x^5 + 8172*x^6 + 66681*x^7 + 560173*x^8 + 4815143*x^9 + 42154010*x^10 + ...
RELATED SERIES.
(3*A(x^9)/A(x) - 1)^3 = 8 - 36*x - 54*x^2 - 171*x^3 - 1809*x^4 - 12258*x^5 - 92529*x^6 - 751626*x^7 + ...
9*A(x^3)^3 / A(x)^3 = 9 - 27*x - 54*x^2 - 171*x^3 - 1809*x^4 - 12258*x^5 - 92529*x^6 - 751626*x^7 + ...
so that 9*A(x^3)^3 / A(x)^3 - (3*A(x^9)/A(x) - 1)^3 = 1 + 9*x.
PROG
(PARI) {a(n) = my(V=[1], A); for(m=0, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef( 1 + 9*x + (3*subst(A, x, x^9)/A - 1)^3 - 9*subst(A, x, x^3)^3/A^3, #V-1)/9 ); V[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 14 2024
STATUS
approved