login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376529
G.f. A(x) satisfies (1 + 9*x*A(x)^3/A(x^9)^3)^3 = 1 + 27*x*A(x)^6/A(x^3)^6.
1
1, 3, 27, 321, 4257, 61155, 924543, 14492790, 233421669, 3839329521, 64218149487, 1088970739038, 18678139900776, 323477653749255, 5648683685011425, 99348712270884792, 1758325597698951072, 31292300465578800315, 559640987226716260068, 10052876829984340893552, 181296262179794893505427
OFFSET
0,2
COMMENTS
Formula (2.6) given in the Borwein link implies the identity
(1 + 9*x*P(x)^3/P(x^9)^3)^3 = 1 + 27*x*P(x)^12/P(x^3)^12
for the partition function P(x) = 1/Product_{n>=1} (1 - x^n) (A000041).
For fixed integer m, the g.f. G(x) that satisfies (1 + 9*x*G(x)^3/G(x^9)^3)^3 = 1 + 27*x*G(x)^m/G(x^3)^m forms an integer power series in x only when m = 12 (the partition function P(x)), m = 6 (the g.f. A(x) of this sequence), or m = 0.
LINKS
J. M. Borwein, P. B. Borwein and F. Garvan, Some Cubic Modular Identities of Ramanujan, Trans. Amer. Math. Soc. 343 (1994), p. 39, formula (2.6).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 27*x^2 + 321*x^3 + 4257*x^4 + 61155*x^5 + 924543*x^6 + 14492790*x^7 + 233421669*x^8 + 3839329521*x^9 + ...
RELATED SERIES.
(1 + 9*x*A(x)^3/A(x^9)^3)^3 = 1 + 27*x + 486*x^2 + 8019*x^3 + 131706*x^4 + 2182626*x^5 + 36571014*x^6 + 619550127*x^7 + ...
which also equals 1 + 27*x*A(x)^6/A(x^3)^6.
A(x)^3/A(x^9)^3 = 1 + 9*x + 108*x^2 + 1476*x^3 + 21465*x^4 + 327321*x^5 + 5163804*x^6 + 83575719*x^7 + 1379999187*x^8 + ...
A(x)^6/A(x^3)^6 = 1 + 18*x + 297*x^2 + 4878*x^3 + 80838*x^4 + 1354482*x^5 + 22946301*x^6 + 392705496*x^7 + 6782271912*x^8 + ...
PROG
(PARI) {a(n) = my(V=[1], A); for(m=0, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef( (1 + 9*x*Ser(A)^3/subst(Ser(A), x, x^9)^3 )^3 - 1 - 27*x*Ser(A)^6/subst(Ser(A), x, x^3)^6, #V)/81 ); V[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A364965 A078532 A264684 * A217363 A234462 A371657
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2024
STATUS
approved