login
A371657
G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x) + A(x)^2).
2
1, 3, 27, 333, 4752, 73764, 1209492, 20610693, 361403937, 6478386561, 118181952369, 2186908154748, 40949739595242, 774474351098031, 14772979729013247, 283878381945510621, 5490264493926636912, 106786725176131118523, 2087502569999563971843
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/n) * Sum_{k=0..floor(n-1)/2} 3^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0.
PROG
(PARI) a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 3^(n-k)*binomial(n, k)*binomial(3*n-k, n-1-2*k))/n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 01 2024
STATUS
approved