login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277218
Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients.
5
1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 20, 32, 58, 94, 169, 289, 526, 910, 1667, 2934, 5448, 9686, 18084, 32540, 61108, 110780, 208960, 381676, 723354, 1328980, 2527074, 4669367, 8908546, 16535154, 31630390, 58965214, 113093022, 211591218, 406680465, 763535450, 1470597342, 2769176514, 5342750699, 10089240974
OFFSET
0,5
COMMENTS
q-binomial coefficients are polynomials in q with integer coefficients.
Is A055606 a shifted version of this sequence?
LINKS
E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
Eric W. Weisstein, q-Binomial Coefficient
Wikipedia, q-binomial
FORMULA
a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - Vaclav Kotesovec, Oct 09 2016
EXAMPLE
Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.
MAPLE
f:= proc(n) local k, c, v, q;
uses QDifferenceEquations;
v:= 0:
for k from 0 to n do
c:= coeffs(expand(expand(QBinomial(n, k, q))), q);
v:= max(v, max(c));
od:
v
end proc:
map(f, [$0..50]); # Robert Israel, Oct 05 2016
MATHEMATICA
Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 24 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved