login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277218 Maximal coefficient among the polynomials in row n of the triangle of q-binomial coefficients. 5
1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 20, 32, 58, 94, 169, 289, 526, 910, 1667, 2934, 5448, 9686, 18084, 32540, 61108, 110780, 208960, 381676, 723354, 1328980, 2527074, 4669367, 8908546, 16535154, 31630390, 58965214, 113093022, 211591218, 406680465, 763535450, 1470597342, 2769176514, 5342750699, 10089240974 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

q-binomial coefficients are polynomials in q with integer coefficients.

Is A055606 a shifted version of this sequence?

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..200

E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.

Eric W. Weisstein, q-Binomial Coefficient

Wikipedia, q-binomial

FORMULA

a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - Vaclav Kotesovec, Oct 09 2016

EXAMPLE

Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.

MAPLE

f:= proc(n) local k, c, v, q;

  uses QDifferenceEquations;

  v:= 0:

  for k from 0 to n do

    c:= coeffs(expand(expand(QBinomial(n, k, q))), q);

    v:= max(v, max(c));

  od:

v

end proc:

map(f, [$0..50]); # Robert Israel, Oct 05 2016

MATHEMATICA

Table[Max[Table[Max[CoefficientList[FunctionExpand[QBinomial[n, k, q]], q]], {k, 0, n}]], {n, 0, 30}]

CROSSREFS

Cf. A002838, A022166, A029895, A055606, A076822.

Sequence in context: A018136 A243853 A293419 * A293643 A022863 A236393

Adjacent sequences:  A277215 A277216 A277217 * A277219 A277220 A277221

KEYWORD

nonn

AUTHOR

Vladimir Reshetnikov, Oct 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 07:07 EST 2020. Contains 331168 sequences. (Running on oeis4.)