OFFSET
0,5
COMMENTS
q-binomial coefficients are polynomials in q with integer coefficients.
Is A055606 a shifted version of this sequence?
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..200
E. Friedman and M. Keith, Magic Carpets, J. Int Sequences, 3 (2000), #P.00.2.5.
Eric W. Weisstein, q-Binomial Coefficient
Wikipedia, q-binomial
FORMULA
a(n) ~ sqrt(3) * 2^(n+2) / (Pi * n^2). - Vaclav Kotesovec, Oct 09 2016
EXAMPLE
Row 5 of the triangle of q-binomial coefficients is [1, 1 + q + q^2 + q^3 + q^4, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + 2*q^2 + 2*q^3 + 2*q^4 + q^5 + q^6, 1 + q + q^2 + q^3 + q^4, 1], so the max coefficient is 2. Hence a(5) = 2.
MAPLE
f:= proc(n) local k, c, v, q;
uses QDifferenceEquations;
v:= 0:
for k from 0 to n do
c:= coeffs(expand(expand(QBinomial(n, k, q))), q);
v:= max(v, max(c));
od:
v
end proc:
map(f, [$0..50]); # Robert Israel, Oct 05 2016
MATHEMATICA
Table[Coefficient[Expand[FunctionExpand[QBinomial[n, Floor[n/2], q]]], q, Floor[n^2/8]], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 24 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Reshetnikov, Oct 05 2016
STATUS
approved