OFFSET
0,4
COMMENTS
Asymptotic to (sqrt(3)/(2*Pi))*(4^n/n^2). It is the number of lattice paths from (0,0) to (n,n-1) with steps only to the right or upward and having area n(n-1)/2 between the path and the x-axis. In the reference by Takács use formula (77) with a=n, b=n(n-1)/2 and then Stirling's formula. - Kent E. Morrison, May 28 2016
a(n) is the number of fair dice with n sides and expected value (n+1)/2 with distinct composition of numbers between 1 and n. - Felix Huber, Aug 02 2024
LINKS
Max Alekseyev and Alois P. Heinz, Table of n, a(n) for n = 0..240 (terms n=1..100 from Max Alekseyev)
L. Takács, Some asymptotic formulas for lattice paths, J. Statist. Plann. Inference, 14 (1986), 123-142.
FORMULA
a(n) = A067059(n,n+1); also a(n) = T[n*(n-1)/2, n-1, n] with T[ ] defined as in A047993. - Martin Fuller, Jun 27 2006
EXAMPLE
a(4)=5 as T(4)=10= 1+1+4+4 =1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
MATHEMATICA
f[n_] := Block[{p = IntegerPartitions[n(n + 1)/2, n]}, Length[ Select[p, Length[ # ] == n &]]]; Table[ f[n], {n, 1, 13}]
PROG
(JavaScript)
ccc=new Array(); cccc=0;
for (n=1; n<11; n++)
{
str='cc=0; for (i1=1; i1<'+(n+1)+'; i1++)';
str2='i1';
str3='i1';
tn=1;
for (i=2; i<=n; i++)
{
str+='for (i'+i+'=i'+(i-1)+'; i'+i+'<'+(n+1)+'; i'+i+'++)';
str2+='+i'+i;
str3+=', ", ", i'+i;
tn+=i;
}
str+='if ('+str2+'=='+tn+') document.print(++cc, ":", '+str3+', "<br>")';
eval(str);
ccc[cccc++ ]=cc;
document.print('****<br>');
}
document.write(ccc);
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Nov 19 2002
EXTENSIONS
Edited and extended to 12 terms by Robert G. Wilson v, Nov 23 2002
Further terms from Max Alekseyev, May 24 2007
a(0)=1 prepended by Alois P. Heinz, May 28 2016
STATUS
approved