The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076823 Array of coefficients of 1/det(M_n)*P(M_n) where P(M_n) is the characteristic polynomial of M_n, the n-th n X n Hilbert matrix M_n(i,j)=1/(i+j-1). 1
 -1, 1, 1, -16, 12, -1, 381, -3312, 2160, 1, -10496, 1603680, -10137600, 6048000, -1, 307505, -1022881200, 92708406000, -476703360000, 266716800000, 1, -9316560, 750409713900, -1242627237734400, 78981336366912000, -349935855575040000, 186313420339200000, -1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Montgomery made a conjecture related to the largest eigenvalue of the Hilbert matrix (cf. link) LINKS Robert Israel, Table of n, a(n) for n = 1..902 Keith Matthews, Hilbert inequality. FORMULA T(n,0)=(-1)^n, T(n,n) = A005249(n). - Robert Israel, May 07 2018 MAPLE f:= proc(n) uses LinearAlgebra; local P, M; M:= HilbertMatrix(n); P:= CharacteristicPolynomial(M, t)/Determinant(M); seq(coeff(P, t, i), i=0..n) end proc: seq(f(n), n=1..10); # Robert Israel, May 07 2018 MATHEMATICA row[n_] := Module[{P, M, x}, M = HilbertMatrix[n]; P = CharacteristicPolynomial[M, x]/Det[M]; (-1)^n CoefficientList[P, x]]; Array[row, 10] // Flatten (* Jean-François Alcover, Jun 22 2020 *) PROG (PARI) vector(n+1, i, (polcoeff(charpoly(mathilbert(n))/matdet(mathilbert(n)), i-1) \\ for the "n-th row" CROSSREFS Cf. A005249. Sequence in context: A298450 A028695 A008665 * A070551 A028493 A291426 Adjacent sequences: A076820 A076821 A076822 * A076824 A076825 A076826 KEYWORD sign,tabl AUTHOR Benoit Cloitre, Nov 27 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 18:47 EDT 2023. Contains 365828 sequences. (Running on oeis4.)