login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076823
Array of coefficients of 1/det(M_n)*P(M_n) where P(M_n) is the characteristic polynomial of the n-th n X n Hilbert matrix M_n(i,j)=1/(i+j-1).
1
-1, 1, 1, -16, 12, -1, 381, -3312, 2160, 1, -10496, 1603680, -10137600, 6048000, -1, 307505, -1022881200, 92708406000, -476703360000, 266716800000, 1, -9316560, 750409713900, -1242627237734400, 78981336366912000, -349935855575040000, 186313420339200000, -1
OFFSET
1,4
COMMENTS
Montgomery made a conjecture related to the largest eigenvalue of the Hilbert matrix (cf. link)
LINKS
Keith Matthews, Hilbert inequality.
FORMULA
T(n,0)=(-1)^n, T(n,n) = A005249(n). - Robert Israel, May 07 2018
MAPLE
f:= proc(n) uses LinearAlgebra; local P, M;
M:= HilbertMatrix(n);
P:= CharacteristicPolynomial(M, t)/Determinant(M);
seq(coeff(P, t, i), i=0..n)
end proc:
seq(f(n), n=1..10); # Robert Israel, May 07 2018
MATHEMATICA
row[n_] := Module[{P, M, x}, M = HilbertMatrix[n]; P = CharacteristicPolynomial[M, x]/Det[M]; (-1)^n CoefficientList[P, x]];
Array[row, 10] // Flatten (* Jean-François Alcover, Jun 22 2020 *)
PROG
(PARI) vector(n+1, i, (polcoeff(charpoly(mathilbert(n))/matdet(mathilbert(n)), i-1))) \\ for the "n-th row"
CROSSREFS
Cf. A005249.
Sequence in context: A298450 A028695 A008665 * A070551 A028493 A291426
KEYWORD
sign,tabl
AUTHOR
Benoit Cloitre, Nov 27 2002
STATUS
approved