OFFSET
1,4
COMMENTS
Montgomery made a conjecture related to the largest eigenvalue of the Hilbert matrix (cf. link)
LINKS
Robert Israel, Table of n, a(n) for n = 1..902
Keith Matthews, Hilbert inequality.
FORMULA
T(n,0)=(-1)^n, T(n,n) = A005249(n). - Robert Israel, May 07 2018
MAPLE
f:= proc(n) uses LinearAlgebra; local P, M;
M:= HilbertMatrix(n);
P:= CharacteristicPolynomial(M, t)/Determinant(M);
seq(coeff(P, t, i), i=0..n)
end proc:
seq(f(n), n=1..10); # Robert Israel, May 07 2018
MATHEMATICA
row[n_] := Module[{P, M, x}, M = HilbertMatrix[n]; P = CharacteristicPolynomial[M, x]/Det[M]; (-1)^n CoefficientList[P, x]];
Array[row, 10] // Flatten (* Jean-François Alcover, Jun 22 2020 *)
PROG
(PARI) vector(n+1, i, (polcoeff(charpoly(mathilbert(n))/matdet(mathilbert(n)), i-1))) \\ for the "n-th row"
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Benoit Cloitre, Nov 27 2002
STATUS
approved