login
A005249
Determinant of inverse Hilbert matrix.
(Formerly M4882)
37
1, 1, 12, 2160, 6048000, 266716800000, 186313420339200000, 2067909047925770649600000, 365356847125734485878112256000000, 1028781784378569697887052962909388800000000, 46206893947914691316295628839036278726983680000000000
OFFSET
0,3
COMMENTS
a(n) = 1/determinant of M(n)*(-1)^floor(n/2) where M(n) is the n X n matrix m(i,j)=1/(i-j+n).
For n>=2, a(n) = Product k=1...(n-1) (2k+1) * C(2k,k)^2. This is a special case of the Cauchy determinant formula. A similar formula exists also for A067689. - Sharon Sela (sharonsela(AT)hotmail.com), Mar 23 2002
REFERENCES
Philip J. Davis, Interpolation and Approximation, Dover Publications, 1975, p. 288.
Jerry Glynn and Theodore Gray, "The Beginner's Guide to Mathematica Version 4," Cambridge University Press, Cambridge UK, 2000, page 76.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Man-Duen Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly, 90 (1983), 301-312.
Sajad Salami, On special matrices related to Cauchy and Toeplitz matrices, Instítuto da Matemática e Estatística, Universidade Estadual do Rio de Janeiro (Brazil, 2019).
Eric Weisstein's World of Mathematics, Hilbert Matrix.
FORMULA
a(n) = n^n*(Product_{k=1..n-1} (n^2 - k^2)^(n-k))/Product_{k=0..n-1} k!^2. - Benoit Cloitre, Jan 15 2003
The reciprocal of the determinant of an n X n matrix whose element at T(i, j) is 1/(i+j-1).
a(n+1) = a(n)*A000515(n) = a(n)*(2*n+1)*binomial(2n,n)^2. - Enrique Pérez Herrero, Mar 31 2010 [In other words, the partial products of sequence A000515. - N. J. A. Sloane, Jul 10 2015]
a(n) = n!*Product_{i=1..2n-1} binomial(i,floor(i/2)) = n!*|A069945(n)|. - Peter Luschny, Sep 18 2012
a(n) = Product_{i=1..2n-1} A056040(i) = A163085(2*n-1). - Peter Luschny, Sep 18 2012
a(n) ~ A^3 * 2^(2*n^2 - n - 1/12) * n^(1/4) / (exp(1/4) * Pi^n), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, May 01 2015
a(n) = A000178(2*n-1)/A000178(n-1)^4, for n >= 1. - Amiram Eldar, Oct 20 2022
EXAMPLE
The matrix begins:
1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ...
1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ...
1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ...
1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ...
1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
MAPLE
with(linalg): A005249 := n-> 1/det(hilbert(n));
MATHEMATICA
Table[ 1 / Det[ Table[ 1 / (i + j), {i, 1, n}, {j, 0, n - 1} ]], {n, 1, 10} ]
Table[Denominator[Det[HilbertMatrix[n]]], {n, 0, 12}]//Quiet (* L. Edson Jeffery, Aug 05 2014 *)
Table[BarnesG[2 n + 1]/BarnesG[n + 1]^4, {n, 0, 10}] (* Jan Mangaldan, Sep 22 2021 *)
PROG
(PARI) a(n)=n^n*prod(k=1, n-1, (n^2-k^2)^(n-k))/prod(k=0, n-1, k!^2)
(PARI) a(n)=if(n<0, 0, 1/matdet(mathilbert(n)))
(PARI) a(n)=if(n<0, 0, prod(k=0, n-1, (2*k)!*(2*k+1)!/k!^4))
(J)
H=: % @: >: @: (+/~) @: i.
det=: -/ .* NB. Roger Hui, Oct 12 2005
(Sage)
def A005249(n):
swing = lambda n: factorial(n)/factorial(n//2)^2
return mul(swing(i) for i in (1..2*n-1))
[A005249(i) for i in (0..10)] # Peter Luschny, Sep 18 2012
(GAP) List([0..10], n->Product([1..n-1], k->(2*k+1)*Binomial(2*k, k)^2)); # Muniru A Asiru, Jul 07 2018
KEYWORD
nonn,easy,nice
EXTENSIONS
1 more term from Jud McCranie, Jul 16 2000
Additional comments from Robert G. Wilson v, Feb 06 2002
STATUS
approved