The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005247 a(n) = 3*a(n-2) - a(n-4), a(0)=2, a(1)=1, a(2)=3, a(3)=2. Alternates Lucas (A000032) and Fibonacci (A000045) sequences for even and odd n. (Formerly M0149) 6
 2, 1, 3, 2, 7, 5, 18, 13, 47, 34, 123, 89, 322, 233, 843, 610, 2207, 1597, 5778, 4181, 15127, 10946, 39603, 28657, 103682, 75025, 271443, 196418, 710647, 514229, 1860498, 1346269, 4870847, 3524578, 12752043, 9227465, 33385282, 24157817 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..500 T. Crilly, Double sequences of positive integers, Math. Gaz., 69 (1985), 263-271. R. K. Guy, Letter to N. J. A. Sloane, Feb 1986 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1). FORMULA a(0)=2, a(1)=1, a(2)=3, a(n) = (1+a(n-1)a(n-2))/a(n-3), n >= 3. a(-n) = a(n). G.f.: (2+x-3*x^2-x^3)/((1-x-x^2)*(1+x-x^2)) a(n) = F(n) if n odd, a(n) = L(n) if n even. a(n) = F(n+1)+(-1)^nF(n-1). - Mario Catalani (mario.catalani(AT)unito.it), Sep 20 2002 a(n) = ((5+sqrt(5))/10)*(((1+sqrt(5))/2)^n+((-1+sqrt(5))/2)^n)+((5-sqrt(5))/10)*(((1-sqrt(5))/2)^n+((-1-sqrt(5))/2)^n). With additional leading 1: a(n)=((sqrt(5))/5)*(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)+((5+3*sqrt(5))/10)*((-1+sqrt(5))/2)^n+((5-3*sqrt(5))/10)*((-1-sqrt(5))/2)^n. - Tim Monahan, Jul 25 2011 From Peter Bala, Jan 11 2013: (Start) Let phi = 1/2*(sqrt(5) - 1). This sequence is the simple continued fraction expansion of the real number 1 + product {n >= 0} (1 + sqrt(5)*phi^(4*n+1))/(1 + sqrt(5)*phi^(4*n+3)) = 2.77616 23282 02325 23857 ... = 2 + 1/(1 + 1/(3 + 1/(2 + 1/(7 + ...)))). Cf. A005248. Furthermore, for k = 0,1,2,... the simple continued fraction expansion of 1 + product {n >= 0} (1 + 1/5^k*sqrt(5)*phi^(4*n+1))/(1 + 1/5^k*sqrt(5)*phi^(4*n+3)) equals [2; 1*5^k, 3, 2*5^k, 7, 5*5^k, 18, 13*5^k, 47, ...]. (End) a(n) = hypergeom([(1-n)/2, n mod 2 - n/2], [1 - n], -4) for n > 2. - Peter Luschny, Sep 03 2019 E.g.f.: 2*cosh(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Mar 15 2022 MAPLE with(combinat): A005247 := n-> if n mod 2 = 1 then fibonacci(n) else fibonacci(n+1)+fibonacci(n-1); fi; A005247:=-(z+1)*(3*z**2-z-1)/(z**2-z-1)/(z**2+z-1); # Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1. MATHEMATICA CoefficientList[Series[(2 + x - 3x^2 - x^3)/(1 - 3x^2 + x^4), {x, 0, 40}], x] LinearRecurrence[{0, 3, 0, -1}, {2, 1, 3, 2}, 50] (* Harvey P. Dale, Oct 10 2012 *) PROG (PARI) a(n)=if(n%2, fibonacci(n), fibonacci(n+1)+fibonacci(n-1)) (Haskell) a005247 n = a005247_list !! n a005247_list = f a000032_list a000045_list where    f (x:_:xs) (_:y:ys) = x : y : f xs ys -- Reinhard Zumkeller, Dec 27 2012 (Magma) I:=[2, 1, 3, 2]; [n le 4 select I[n] else 3*Self(n-2) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017 CROSSREFS Cf. A000032, A000045, A005013, A005013, A005246, A005248. Sequence in context: A348747 A082833 A101709 * A280104 A135259 A122147 Adjacent sequences:  A005244 A005245 A005246 * A005248 A005249 A005250 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS Additional comments from Michael Somos, May 01 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 05:56 EDT 2022. Contains 353693 sequences. (Running on oeis4.)