OFFSET
1,2
COMMENTS
Here a "gap" means prime(n+1) - prime(n), but in other references it can mean prime(n+1) - prime(n) - 1.
a(n+1)/a(n) <= 2, for all n <= 80, and a(n+1)/a(n) < 1 + f(n)/a(n) with f(n)/a(n) <= epsilon for some function f(n) and with 0 < epsilon <= 1. It also appears, with the small amount of data available, for all n <= 80, that a(n+1)/a(n) ~ 1. - John W. Nicholson, Jun 08 2014, updated Aug 05 2019
Equivalent to the above statement, A053695(n) = a(n+1) - a(n) <= a(n). - John W. Nicholson, Jan 20 2016
Conjecture: a(n) = O(n^2); specifically, a(n) <= n^2. - Alexei Kourbatov, Aug 05 2017
Conjecture: below the k-th prime, the number of maximal gaps is about 2*log(k), i.e., about twice as many as the expected number of records in a sequence of k i.i.d. random variables (see arXiv:1709.05508 for a heuristic explanation). - Alexei Kourbatov, Mar 16 2018
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 133.
R. K. Guy, Unsolved Problems in Number Theory, A8.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Brian Kehrig, Table of n, a(n) for n = 1..83 (first 77 terms from John W. Nicholson, terms n=78..80 added by Rodolfo Ruiz-Huidobro)
Jens Kruse Andersen and Norman Luhn, Record Prime Gaps
Alex Beveridge, Table giving known values of A000101(n), A005250(n), A107578(n)
R. P. Brent, J. H. Osborn and W. D. Smith, Lower bounds on maximal determinants of +-1 matrices via the probabilistic method, arXiv preprint arXiv:1211.3248 [math.CO], 2012.
C. K. Caldwell, Table of prime gaps
C. K. Caldwell, Gaps up to 1132
R. K. Guy, Letter to N. J. A. Sloane, Aug 1986
R. K. Guy, Letter to N. J. A. Sloane, 1987
Lutz Kämmerer, A fast probabilistic component-by-component construction of exactly integrating rank-1 lattices and applications, arXiv:2012.14263 [math.NA], 2020.
Alexei Kourbatov, Maximal gaps between prime k-tuples: a statistical approach, arXiv preprint arXiv:1301.2242 [math.NT], 2013 and J. Int. Seq. 16 (2013) #13.5.2.
Alexei Kourbatov, Tables of record gaps between prime constellations, arXiv preprint arXiv:1309.4053 [math.NT], 2013.
Alexei Kourbatov, The distribution of maximal prime gaps in Cramer's probabilistic model of primes, arXiv preprint arXiv:1401.6959 [math.NT], 2014.
Alexei Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, arXiv:1506.03042 [math.NT], 2015; and J. Int. Seq. 18 (2015) #15.11.2.
Alexei Kourbatov, Verification of the Firoozbakht conjecture for primes up to four quintillion, arXiv:1503.01744 [math.NT], 2015; and Int. Math. Forum, 10 (2015), 283-288.
Alexei Kourbatov, On the distribution of maximal gaps between primes in residue classes, arXiv preprint arXiv:1610.03340 [math.NT], 2016.
Alexei Kourbatov, On the nth record gap between primes in an arithmetic progression, arXiv:1709.05508 [math.NT], 2017; and Int. Math. Forum, 13 (2018), 65-78.
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv:1901.03785 [math.NT], 2019.
Ya-Ping Lu and Shu-Fang Deng, An upper bound for the prime gap, arXiv:2007.15282 [math.GM], 2020.
Thomas R. Nicely, Some Results of Computational Research in Prime Numbers [See local copy in A007053]
Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
Tomás Oliveira e Silva, Gaps between consecutive primes
D. Shanks, On maximal gaps between successive primes, Mathematics of Computation, 18(88), 646-651. (1964).
Matt Visser, Verifying the Firoozbakht, Nicholson, and Farhadian conjectures up to the 81st maximal prime gap, arXiv:1904.00499 [math.NT], 2019.
Eric Weisstein's World of Mathematics, Prime Gaps
Wikipedia, Prime gap
Robert G. Wilson v, Notes (no date)
Marek Wolf, A Note on the Andrica Conjecture, arXiv:1010.3945 [math.NT], 2010.
J. Young and A. Potler, First occurrence prime gaps, Math. Comp., 52 (1989), 221-224.
FORMULA
a(n+1) = 1 + Sum_{i=1..n} A053695(i). - John W. Nicholson, Jan 20 2016
MATHEMATICA
nn=10^7; Module[{d=Differences[Prime[Range[nn]]], ls={1}}, Table[If[d[[n]]> Last[ls], AppendTo[ls, d[[n]]]], {n, nn-1}]; ls] (* Harvey P. Dale, Jul 23 2012 *)
DeleteDuplicates[Differences[Prime[Range[10^7]]], GreaterEqual] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, May 12 2022 *)
PROG
(PARI) p=q=2; g=0; until( g<(q=nextprime(1+p=q))-p & print1(g=q-p, ", "), ) \\ M. F. Hasler, Dec 13 2007
(PARI) p=2; g=0; m=g; forprime(q=3, 10^13, g=q-p; if(g>m, print(g", ", p, ", ", q); m=g); p=q) \\ John W. Nicholson, Dec 18 2016
(Haskell)
a005250 n = a005250_list !! (n-1)
a005250_list = f 0 a001223_list
where f m (x:xs) = if x <= m then f m xs else x : f x xs
-- Reinhard Zumkeller, Dec 12 2012
CROSSREFS
KEYWORD
nonn,nice,changed
AUTHOR
N. J. A. Sloane, R. K. Guy, May 20 1991
EXTENSIONS
More terms from Andreas Boerner (andreas.boerner(AT)altavista.net), Jul 11 2000
Additional comments from Frank Ellermann, Apr 20 2001
More terms from Robert G. Wilson v, Jan 03 2002, May 01 2006
STATUS
approved