login
A005253
Number of binary words not containing ..01110...
(Formerly M1044)
5
1, 1, 1, 1, 2, 4, 7, 11, 16, 23, 34, 52, 81, 126, 194, 296, 450, 685, 1046, 1601, 2452, 3753, 5739, 8771, 13404, 20489, 31327, 47904, 73252, 112004, 171245, 261813, 400285, 612009, 935737, 1430710, 2187496, 3344567, 5113647, 7818464, 11953991, 18277014
OFFSET
0,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
Russ Chamberlain, Sam Ginsburg and Chi Zhang, Generating Functions and Wilf-equivalence on Theta_k-embeddings, University of Wisconsin, April 2012.
R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
V. C. Harris, C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,3,2).
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: (1-x+x^4)/(1-2x+x^2-x^5). - Simon Plouffe in his 1992 dissertation.
a(n-1) = Sum{k=0..floor(n/5)} binomial(n-3k, 2k). - Paul Barry, Sep 16 2004
MATHEMATICA
LinearRecurrence[{2, -1, 0, 0, 1}, {1, 1, 1, 1, 2}, 50] (* Harvey P. Dale, Mar 14 2018 *)
CROSSREFS
Sequence in context: A062433 A317910 A065095 * A212364 A320591 A129339
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, Mar 14 2018
STATUS
approved