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Anyone for Twopins?
_—@@—

Richard K. Guy

UNIVERSITY OF CALGARY

The bowling game of Twopins (pronounced “Tuppins”) is played by
two people, with columns of pins lined up as in Figure 1. Each column
contains one or two pins. The columns are spaced so that the bowler may
knock out any one column, or any two neighboring columns. Ifa column of
two is hit, both pins fall. After a shot, the pins are not reset before the
opponent takes his turn. The game ends when the last pin falls and the
person knocking it down is declared the winner. For a proper shot, at least
two pins must fall; you are not allowed to remove a single column when it
contains only one pin, and the game may end with some isolated single pins
still standing. In Figure 1, for example, you may remove column 4 only,
but not columns b, ¢, e or A, unless you remove an adjacent column at the
same time. After removal of d, the opponent cannot remove columns ¢ and ¢
because these are not neighboring.

Twopins is considered an impartial game because in any position, the
available options are the same for each of the two players. In contrast, chess
is a partisan game because, in any position, Black has a different set of
available options from White. The theory of impartial games in which the
last player is declared the winner, is not as widely known as it deserves to be.
It was discovered independently by Sprague [21] and Grundy [12] and by
various people since. They found that every position in any impartial game
has a nim-value; that is, the position is equivalent to a nim-heap, or a heap of
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ANYONE FOR TWOPINS?

beans in the game of Nim [4,2,15]. There is a simple rule for finding the
nim-value of a position:

Take the mex of the nim-values of the options.

The mex (minimum excluded value) of a set of nonnegative integers is the
least nonnegative integer not in the set. For example, mex {5,3,0,71§=2
and mex & = 0, therefore, the nim-value for the Endgame (when there are
no options and the game is finished) is zero.

The importance of the nim-value, or Sprague-Grundy function,
derives from the fact that all (positions in) impartial games form an
additive Abelian group. Indeed, so do all last-player-winning games,
including the partisan ones, but the Sprague-Grundy theory applies only to
the subgroup of impartial games.

The sum (or disjunctive combination) of two or more positions, (not
necessarily in the same game) is played as follows:

The player whose turn it is to move chooses one of the component
games and makes a legal move in that component.

The compound game ends when each component has ended, and the last
player is again the winner. It is easy to see that this kind of addition is
associative and commutative.

The identity of the group is, of course, the Endgame, and the negative
of any position is the same position with the opposing player to move. (In
impartial games each position is its own negative.) Most people have come
across examples of the Tweedledum and Tweedledee principle, in which a
symmetry strategy, mimicking your opponent’s moves, enables you to win

FIGURE 1
Ready for a shot at Twopins.
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MATHEMATICAL GARDNER

a game. This additive group is not only mathematically pretty, but is also
important practically, since many games break up into sums of separate
games in the normal course of play. A typical move in Twopins, for
example, breaks a row into two shorter rows, and therefore, the next move
must be made in one of the two new rows.

The main result of the Sprague-Grundy theory for impartial games
with the last player winning is summarized in the theorem:

The nim-value of the sum of two games is the nim-sum of their
nim-values.

To find the nim-sum of two nonnegative integers, add them in binary
without carrying. This is the operation used by Bouton [4] in his original
analysis of Nim (see also [2,15]). Indeed, now that we have the Sprague-
Grundy theory, Nim is seen to be the archetype of all impartial games: a
typical Nim position is the disjunctive sum of games of Nim, each played

with one heap.

d, = Game played with rows of beans Game played with heaps of beans
There is no legal move in which r beans may be taken.
1=2° r beans may be taken if they A heap of exactly r beans may be
comprise a whole row. removed completely.

2=2! r beans may be taken from either r beans may be taken from a
end of a longer row. (larger) heap, leaving a non-

empty heap.

3=2'+2° 7 beans may be taken in either of the last two circumstances,

(leaving 0 or 1 rows). (leaving 0 or 1 heaps).
4=2° r consecutive beans may be taken r beans may be taken from a heap
strictly from within a longer of r+ 2 or more, leaving the
row, leaving 2 nonempty remainder as two non-empty
rows. heaps.

5 =22+ 2% | rconsecutive beans may be taken A heap of r beans may be taken,
from a row, if this leaves just 0 or r beans may be taken from a
or 2 rows. heap of > r+ 2, leaving the

rest as two nonempty heaps.

6 =22+ 2! | rconsecutive beans may be taken r beans may be taken from a
from a longer row, leaving 1 or larger heap, with the rest left
2 rows. as 1 or 2 heaps.

7=22+2! r beans may be taken in any of these circumstances,

+2° (leaving 0, 1 or 2 rows). (leaving 0, 1 or 2 heaps).

TABLE 1

Meaning of the octal code digit d,.

PZEISS



ANYONE FOR TWOPINS?

: The game of Twopins was discovered by Elwyn Berlekamp in the
. course of his ingenious analysis [3, Chapter 16] of the well-known paper-
'~ and-pencil game, Dots-and-Boxes, or Dots-and-Squares [10]. It contains,
.~ as special cases, the games of Kayles [8,19,9] and Dawson’s Kayles [6,7],
~ which we’ll soon describe and whose analyses are already known. In fact,
- Guy and Smith [14] investigated a large class of “‘take and break” games,
'~ played with rows or heaps of beans. These may be called octal games because
' the rules can be described by a code name in the scale of eight:

do-d,d,d; ...

- where dy =0 or 4 (split a row or heap into two nonempty rows or heaps
~ without removing any beans) and, 0 <d, < 7 for 7 > 1; the meaning of the
~ digits is given in Table 1. For example, the code name for the game called
Kayles by Dudeney [8] and Rip Van Winkle’s Game by Loyd [19,9] is 0-77.
- Itis the special case of Twopins where every column contains two pins, so
- that the rules can be concisely stated as: take 1 or 2 adjacent columns.
] Analysis of octal games was first prompted by a problem proposed by
- T. R. Dawson, the fairy chess expert [6,7]. We call it Dawson’s Chess. It is
played on a chessboard with 3 ranks and = files (Figure 2). White and Black
pawns occupy the first and third ranks, respectively, and the game is
- “losing chess’ in that the capture is obligatory and the last player loses.
~ Those who know how pawns move and capture will soon see that pairs of
pawns become blocked on a file after any pawns in the neighboring files
have been swapped. So Dawson’s Chess may be played with a row of
beans, with the option to take any bean, provided that its immediate
neighbors, if any, are removed at the same time. You can check that in
octal code, this is the game 0-137.)

The game as Dawson originally proposed it is in misére form; that is,
the last player loses. The analysis of miseére games is inordinately more
complicated than the normal form, where the last player wins. Because
misére Nim involves only a small change of strategy near the end, people
have often been deceived into thinking that strategies for other impartial
games can be similarly modified. For the vast majority of them this is not

] ] ] ] [ ] [ ] [ ] [
- = - - = - =
& & & & & & & &

%

///////5/

Vo 4 /f/”’/%/% /7://? ' 4 ///;/,?
S Vo o &

FIGURE 2

Ready for a game of Dawson’s chess.
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true. (See Grundy and Smith [13] or Conway [5, chapter 12], who give an
analysis of the first few positions of the misére forms of Dawson’s Chess (in
the form 0-4 and of Kayles [p. 145]. More extensive analyses will be found
in Chapter 16 of [2].)

It is not difficult to show [14] that the games 0-137, 0-07 and 0-4 are
closely related. We call the form 0-07 Dawson’s Kayles. It may be played
with a row of beans; a move is defined as the taking of two adjacent beans.
Thus, it is the special case of Twopins in which each column contains a
single pin. The nim-values for Kayles and Dawson’s Kayles, played with a
row of n beans, were found [14] to be periodic, apart from some irregular
values for small values of n, with periods 12 and 34, respectively.

It is unrealistic to ask for a complete analysis of Twopins, since its
positions are too various. How many essentially different positions are there
with 7 columns? Because there are just two kinds of columns, the simple
answer is 2" positions, but we do not need to investigate all of these because
Berlekamp has already pointed out various equivalences between positions,
which you may easily verify:

1 Oxgk --- = *ijk --- = 004k ---,
2 - ykxOxlmn --- = -+ gk* + *lmn -,
3 - kx00%lmn --- = --- gkxxxlmn ---,

where 0 represents a column with one pin (on its own it can be removed by
neither player and is the Endgame); * represents a column with two pins
(which may be removed by either player, therefore it is equivalent to a nim-
heap of 1); the game star, [5, p. 72] and letters represent columns of either
sort; and the sum sign on the right of equation 2 is the disjunctive sum we’ve
already described.

We need to analyze then, only those Twopins positions which have a
star at either end, as in equation 1, and in which 0’s (columns of 1 pin) do
not occur except in blocks of at least three, as in equations 2 and 3. Binary
sequences of this kind were enumerated by Austin and Guy [1], who had 0
and 1 in place of our #* and 0. The relevant number, ¢,, of such Twopins
positions is (¥, in their notation and the difference of 2 in rank is due to
the 2 stars at either end of the row. The quantity ¢, satisfies the recurrence

by = 2tn—l — -2 i In-4

w=(o)+ () (3)

where f, is the Fibonacci number
i LI I/ (1 —a/BY
Cm 3 | W 2 )

D6
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ANYONE FOR TWOPINS?

However, it is unnecessary to analyze positions which are mere reflections
of those already analyzed, so we next ask for the number of symmetrical
positions, s,.

The center of a symmetrical position is of one of the 4 types, 4,B,C, D,
shown on the left of Figure 3, if n is odd, where ? denotes either 0 or *. If n
is even, replace the central symbol by a pair of equal ones. The central
symbol (if z is odd) may be replaced by

(a) * * %, (b) 00, or (c) 000

to yield symmetrical positions with two more columns, except that (a) may

cee ok Pk ok k| K cee A
A -.-***---
- %x|000|% - B
B -+ % 0]0]0 * --- -+ %x0l000[0 * --- C
C -+ %00[0]00 % --- ---%x00/]0?20]|00 % --- D
---000/0?0/000 --- D
D ---0001?21000 ---
---000l%* «%x|000--- A4

FIGURE 3
The four types of center for a symmetrical position.

not be used in cases B and C, and (b) may not be used in 4 or B. If nis even,
replaces the central pair of symbols by
(a) . o % *x *x, (b) 0% %0, or (c) 0000.

Let A, denote the number of symmetrical n-column positions of type 4,
etc., so that

A, =4, ,+ D,_,,
B,=4,_,
Co=B,_3,
D,=C,,+D,_,,
and insert a coefficient 2 to allow for the ambiguity in D,
=4+ 8+ +2D,
= (dp-2t B, T C,—, T2D, ) T (s T lig T Dy y)
=(4,_,+ B, ,+C,_,+2D, ;) +
(Ap-g+ B,y +C,_s+2D,_,)

ZNASS




MATHEMATICAL GARDNER

Thus, s, satisfies the recurrence
5 X”ZJ”_2+.SH_4
and has value

Sn = Sim+ 124

where | ] is the floor function (greatest integer not greater than) and Sfis
the Fibonacci number 4.

Therefore the number, u,, of unsymmetrical Twopins positions, not
counting reflections as distinct, is

1 1 1 . nm
(b — 5,) = an I ‘Q"fl(n+1)/21 + m Sin ?,

un=

N | —

and the total number, not counting reflections, is

1 1 1 . nm
vn=§(tn+ .Yn) =Z‘f;'+§‘fi("+l)/21+m Sin ?

The more general case
k) _ (k)
tn =ay_>

was discussed in [1], in which 0 occurs in blocks of length at least k. Here we
extend the analysis to obtain the corresponding sequences s, u® and »®
for general £. The formulae are generally true for £ > 1, but for £ = 1 no
restriction is implied (apart from the requirement of % at each end) and it is

easy to see that for n > 2 (and £ = 1),

t, = 2n—2, 5, = 21(11—1)/21’ u, = 2n—3 . 2[(?!—3)/2]’ v, = Qn—3 + 2[(!!—3)/2]

From now on, we will omit the superscripts (k).
First, we use the fact [1] that

6 ty = 2t

m m—1 m—2 m—k—1>
so that
tm i tm—l o lm—l s tm—2+ tm—k—l

P tm—Z = tm—3 + m—k—1 it tm—k—Z

=hay et b Gyt gladh vkt Bl
and since & =, = ... =, =, =1, we have

m—k—1
7 . —t = t



ANYONE FOR TWOPINS?

a convenient algorithm for calculating {¢,,}. We may also sum this formula
to obtain

m—k—1
8 =1+ 3 Am—k—i
i=1

Formulas 7 and 8 were not given in [1].
We next establish formula 5 in the more general form

9 Sn=Sn-21 Sn-k-1-

CASEA t=2/—10dd, n=2m —1 or 2m.

— 2m—1 - — 2m -
* --------- * --------- * * ......... * * --------- *
—m -

* - x 00000 * -+ =% * - %x 000000 % - =%

—m—I[—-> «<k=2l—1-> —m—I > «<kt+1=2]+

*---%x0000000 * --- = *---%x00000000 * --- *

~m—I[—1 —2l1+1—> —m—I[—1->«2t2——

O Ll s e 000 = T e 000 %
FIGURE 4

Symmetrical Twopins positions with 0’s in blocks of > £.

From Figure 4 we see that the number of symmetrical positions is
= tm+ tm—l+ tm—l—l Triees ik tl

o T T SR, e

Sn = S2m-1 = S2m
Sp—2 =Sam-3 =Sam-2 = lm-1

Sn — Sp—2 = Ly s =1 e tm—1
m—21

=t, ;+ 'Zl .

by 7, so that s, — 5,_2 = Sagm-p—1 = S2m—1) = Sn—k— 1> @ required.

CASEB k= 2/ (even), is similar to Case A, but we have to treat
n = 2m and n = 2m — 1 separately:

52m=tm+ tm—l+ tm—l—1+ Tl t17
PRI L WS R T
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(NS e e TR o R Sl o
Soma Tl T bl i agb ity a4y,

Som — Sam-2 = by — b1 * bm—15

Som—1 " Som—-3 = by — bm—1 ot tm—l—l’

and we obtain 9 in either case by the use of 7, as before.
The generating functions for ¢, and s, are

e : 1 —2) = .
T(z,k) = 10 L= ] S el (k) i
(Z ) i;O i g (l Pl z)z _zk+1> (Z,k) i=ZO 51 <
(1 +2
o 1 _z2 _zk+1'

Formulae 7 and 9, together with ‘

1 1
uy, =§ (tn it sn)s Up = § (tn+ sn)

enable us to calculate the values in Table 2, where dots indicate that the
sequences are constant for earlier positive values of .

Of these sequences, the only ones to appear in Sloane’s Handbook
[20] are

the powers of two, £ = 2"~ 2

the Fibonacci numbers, s'*, and

sequence #102, s,
This last appeared in [11] as an example of a sum, having taken over the
generalized diagonals

Ix+2=n—1

of entries in Pascal’s triangle. It is also given in [16,17,18] with factor-
izations and a discussion of divisibility properties. For example,

s is even just if n = 7m — 3, 7m — 2 or Tm.
The highest power of 2 which divides s?) _ is the “ruler function”; the
highest power of 2 in 2m.

3 divides s just if n = 13m — 3, 13m — 2, 13m or 13m + 6.

We have however, wandered away from the game of Twopins. What is
the best hit to make in Figure 1? Berlekamp’s equivalence equation 1 tells us
that column 4 can be ignored, and equation 2 that we can remove e without
affecting the position. Equivalence equation 3 then enables us to put b and ¢
together and the position is

kkk T kx,

a0




ANYONE FOR TWOPINS?

# 3% 4 9567 8 9 10 11 12 13 14 15 16 17 18 19
7 h
vl 2 A 12 21 37 65 114 200 351 616 1081 1897 3329 5842 10252 A o *=of !
C LA ITaE By Y8 07 @ I8 B MumL 5 e 8 8 K A3y
i ORR0) il 2 4 8 15 28 51 92 165 294 522 924 1632 2878 5069 R gG gL
v vollil 2l 181D 8 3. 22 37 63 108 186 322 559 973 1697 2964 5183
Aces3
20 21 22 23 24 25 26 27, 28 29 30

17991 31572 55405 97229 170625 299426 525456 922111 1618192 2839729 4983377
151 200 265 351 465 616 816 1081 1432 1897 2513
8920 15686 27570 48439 85080 149405 262320 460515 808380 1418916 2490432
9071 15886 27835 48790 85545 150021 263136 461596 809812 1420813 2492945

WL T T v TR T T R e IR
1 2 4 7 1 17 27 4 72 117 189 305 493 798 1202 2091 3383 5413 RSL 52
LR e B B A R S 89 AuE
i o 0 18 32 s2 88 142 2% 38 620 1018 1ees 2692 ASGCH
sl B 8 Il 16 2 40 65 101 163 257 416 663 1073 1719 2781 \ O[5
w B WMB ®W W » 29 30 31 32
8855 14328 23184 37513 60607 98209 158905 257114 416020 673135 1089155
LT CYDESETRIE . TR S S SR 987
4383 7092 11520 18640 30232 48916 79264 128252 207705 336074 544084
4479 7236 11664 18873 30465 49293 79641 128862 208315 337061 545071
5 6.7 % 9 1 U iz 1 ow wiwe @ B oW W o9 W B
T 2 4 7 1 1o 2 3 2 81 1% 196 206 450 68 1046 1601 2452 3753 A5 2 £3
BT e (5 . e R R e U | 52 63 ASER%
k=4
0 0 1 2 4 6 9 14 22 3 57 9 139 214 329 506 780 1200 185ACgqy
1 2 3 5 7 10 14 20 30 45 69 104 157 236 356 540 821 1252 19013ﬁ 7y
% 3wl m o mw w80 Bl 32 33 34 35

5739 8771 13404 20489 31327 47904 73252 112004 171245 261813 400285 612009

79 97 120 149 183 228 280 348 29 531 657 811
2830 4337 6642 10170 15572 23838 36486 55828 85408 130641 199814 305599
2909 4434 6762 10319 15755 24066 36766 56176 85837 131172 200471 306410

TABLE 2 (continued on next 2 pages)
Values of r®, s, 4, o0 for k& = 2,3, --,9.

n!sn

allx




k=5
k=6
k=17
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6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 923 24
1 2 4 7 11 16 22 30 42 61 91 137 205 303 443 644 93 1365 199 P SLZD
o S S S R IR TR sl U S N S T TR R (T
L0 0 1 2 4 6 9 12 18 2 41 62 96 142 212 308 454 662 979 562D
1 2 3 5 7 10 13 18 24 35 50 75 109 161 231 33 482 703 1020 €9
25 2 27 28 29 30 31 32 33 34 35 36 37
2936 4316 6340 9300 13625 19949 29209 42785 62701 91917 134758 197548 289547
60 60 88 8 129 129 189 189 277 277 406 406 595
1438 2128 3126 4606 6748 9910 14510 21298 31212 45820 67176 98571 134476
1498 2188 3214 4694 6877 10039 14699 21487 31489 46097 67582 98977 145071
.7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 25
L1 2 4 7 11 16 22 29 38 51 71 102 149 218 316 452 639 897 1257
o 2 2 8 8 4,4 5 6 7.9 10 13 M 18 20 25 29 . .85
L0 0 1 2 4 6 9 12 16 22 31 46 68 102 149 216 307 434 611
.12 3 5 7 10 13 17 22 29 40 56 81 116 167 236 332 463 646
2 97 . 928 99 30 31 32 33 34 35 36 37 38
1766 2493 3536 5031 7165 10196 14484 20538 29085 41168 58282 82561 117036
42 49 60 69 8 98 120 140 169 200 238 285 336
862 1222 1738 2481 3540 5049 7182 10199 14458 20484 29022 41138 58350
904 1271 1798 2550 3625 5147 7302 10339 14627 20684 29260 41423 58686
.8 9 10 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 2
1 2 4 7 11 16 22 29 37 47 61 82 114 162 232 331 467 650 894
S (0 S S T e R A N A O e S PR S T
e L] 6 9 12 16 20 27 36 52 74 109 156 224 312 434
12 3 5 7 10 13 17 21 27 34 46 62 88 123 175 243 338 460
27 28 29 30 31 32 33 34 35 36 37 38 39
1220 1660 2262 3096 4261 5893 8175 11351 15747 21803 30121 41535 57210
3 36 50 50 69 69 95 95 131 131 181 181 250
592 812 1106 1523 2096 2912 4040 5628 7808 10836 14970 20677 28480
628 848 1156 1573 2165 2981 4135 5723 7939 10967 15151 20858 28730
(continued)
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g 1011, 12 0340014, 1504 16 17 L1819 20 21 122 -2 24 25 26 27

1 2 4 7 11 16 22 29 37 46 57 72 94 127 176 247 347 484 667

1 Ol g0y B v By s A 0 B Bt LGl e 81110 11 14 15 19 20 25

0 0 1 9 4 '6 9 12 16 2 25 32 42 58 81 116 164 232 321

1 2 3 5 7 10 13 17 21 2 32 40 52 69 95 131 183 252 346
28 29 30 31 32 33 34 35 36 37 38 39 40

907 1219 1625 2158 2867 3823 5126 6913 9367 12728 17308 23513 31876

27 33 37 44 51 59 70 79 95 106 128 143 172
440 593 794 1057 1408 1882 2528 3417 4636 6311 8590 11685 15852
467 626 831 1101 1459 1941 2598 3496 4731 6417 8718 11828 16024

11 16 22 29 37 46 56 68 84 107 141 191 263 364 502

3 v e b LSE ) 5D 6 6 8 8 11 11 15 15 20 20
12 16 20 25 30 38 48 65 88 124 172 241
1013 17 21 .26 31 38 46 59 76 103 139 192 261

—_— O =

N O NN

W o= N B

N W
=]

29 30 31 32 33 34 35 36 37 38 39 40 41

686 926 1234 1626 2125 2765 3596 4690 6148 8108 10754 14326 19132

26 26 34 34 45 45 60 60 80 80 106 106 140

330 450 600 796 1040 1360 1768 2315 3034 4014 5324 7110 9496

356 476 634 830 1085 1405 1828 2375 3114 4094 5430 7216 9636
TABLE 2

(continued)

al3x




MATHEMATICAL GARDNER

Even without knowing the nim-values, you can see that the (only) good
moves are to take out column 4 or column a.

Figure 5 shows a Twopins-wheel which enables us to read off the nim-
value of any Twopins position of eight or fewer columns of pins, provided
that we know the nim-values for a row of n pins in Kayles or Dawson’s
Kayles (for Dawson’s Chess, slide the nim-values one place to the left);

n 01 9. %4 5.6 7 8.9 11l 12
Kayles Ul 2'8 0 Mg 94 v 4 w2l
Dawson's Kagles: 0 0% 1 1.2 03 1 1.0 .8 5 .2 2218 L

Suppose for example, you want the nim-value of

#% %000 %%,

FIGURE 5

A Twopins-wheel for finding the nim-values of small Twopins
positions.

Find this arrangement in the outer ring (running from 12 o’clock to 3
o’clock), spiral in from the first and last stars, and meet in a cell containing
the value 4. Thus is the nim-value.

What is the best move in the Dawson’s Chess game in Figure 2? Our
advice is to allow your opponent the privilege of the first move. It is a P-
position (previous-player-winning) and has nim-value 0.

* Note that a single pin must remain standing in Dawson’s Kayles.

Z BTN
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