This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317910 Expansion of -1/(1 - x)^2 + (1/(1 - x))*Product_{k>=1} (1 + x^k). 0
 0, 0, 0, 1, 2, 4, 7, 11, 16, 23, 32, 43, 57, 74, 95, 121, 152, 189, 234, 287, 350, 425, 513, 616, 737, 878, 1042, 1233, 1454, 1709, 2004, 2343, 2732, 3179, 3690, 4274, 4941, 5700, 6563, 7544, 8656, 9915, 11340, 12949, 14764, 16811, 19114, 21703, 24612, 27875, 31532, 35628, 40209 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Partial sums of A111133. LINKS FORMULA G.f.: -1/(1 - x)^2 + (1/(1 - x))*Product_{k>=1} 1/(1 - x^(2*k-1)). a(n) = A036469(n) - n - 1. a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (2*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 21 2018 MAPLE a:=series(-1/(1-x)^2+(1/(1-x))*mul((1 + x^k), k=1..100), x=0, 53): seq(coeff(a, x, n), n=0..52); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 52; CoefficientList[Series[-1/(1 - x)^2 + 1/(1 - x) Product[1 + x^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 52; CoefficientList[Series[1/((1 - x) QPochhammer[x, x^2]) - 1/(1 - x)^2, {x, 0, nmax}], x] Table[Sum[PartitionsQ[k] - 1, {k, 0, n}] , {n, 0, 52}] CROSSREFS Cf. A026906, A036469, A058682, A111133. Sequence in context: A181120 A000601 A062433 * A065095 A005253 A212364 Adjacent sequences:  A317907 A317908 A317909 * A317911 A317912 A317913 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Aug 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 04:03 EDT 2019. Contains 327119 sequences. (Running on oeis4.)