The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065095 a(1) = 1, a(n+1) is the sum of a(n) and ceiling( arithmetic mean of a(1) ... a(n) ). 8
 1, 2, 4, 7, 11, 16, 23, 33, 46, 62, 83, 110, 144, 186, 238, 303, 383, 481, 600, 744, 918, 1128, 1380, 1681, 2039, 2464, 2968, 3563, 4264, 5088, 6054, 7184, 8503, 10040, 11827, 13901, 16304, 19082, 22289, 25986, 30240, 35128, 40736, 47161, 54512 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS It seems that a(n) is asymptotic to C*BesselI(0,2*sqrt(n)) where C is a constant C = 0.78... and BesselI(b,x) is the modified Bessel function of the first kind. Can someone prove this? LINKS Harry J. Smith, Table of n, a(n) for n=1,...,1000 FORMULA a(1) = 1, a(n+1) = a(n) + ceiling((a(1) + a(2) + ... + a(n))/n). EXAMPLE a(5) = a(4) + ceiling((a(1)+a(2)+a(3)+a(4))/4) = 7 + ceiling((1+2+4+7)/4) = 7 + floor(14/4) = 7 + 4 = 11. MAPLE a[1] := 1: summe := 0: flip := 1: for j from 1 to 100 do: print (j, a[flip]); summe := summe + a[flip]: a[1-flip] := a[flip] + ceil(summe/j): flip := 1-flip: od: MATHEMATICA a[1] = 1; a[n_] := a[n] = a[n - 1] + Ceiling[ Sum[ a[i], {i, 1, n - 1} ]/(n - 1) ]; Table[ a[ n], {n, 1, 45} ] PROG (PARI) { for (n=1, 1000, if (n==1, s=0; a=1, s+=a; a+=ceil(s/(n - 1))); write("b065095.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009 CROSSREFS Cf. A065094. Sequence in context: A000601 A062433 A317910 * A005253 A212364 A320591 Adjacent sequences:  A065092 A065093 A065094 * A065096 A065097 A065098 KEYWORD nonn,easy AUTHOR Ulrich Schimke (ulrschimke(AT)aol.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 20:45 EDT 2021. Contains 345121 sequences. (Running on oeis4.)