OFFSET
1,2
COMMENTS
It seems that a(n) is asymptotic to C*BesselI(0,2*sqrt(n)) where C is a constant C = 0.44... and BesselI(b,x) is the modified Bessel function of the first kind. Can someone prove this?
Numerically, a(n) ~ c * exp(2*sqrt(n)) / n^(1/4), where c = 0.12571987512700920098166979884420897638511306007242... It follows that the constant above is equal to C = 0.445665353608456118285630970456186510059368576678... - Vaclav Kotesovec, Oct 12 2024
A241772(n) = a(n+1) - a(n) = (Sum_{1..n} a(k)) / n. - Reinhard Zumkeller, Apr 28 2014
LINKS
FORMULA
a(1) = 1, a(n+1) = a(n) + floor((a(1) + a(2) + ... + a(n))/n).
EXAMPLE
a(5) = a(4) + floor((a(1)+a(2)+a(3)+a(4))/4) = 5 + floor((1+2+3+5)/4) = 5 + floor(11/4) = 5 + 2 = 7.
MAPLE
a[1] := 1: summe := 0: flip := 1: for j from 1 to 100 do: print (j, a[flip]); summe := summe + a[flip]: a[1-flip] := a[flip] + floor(summe/j): flip := 1-flip: od:
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[ Sum[ a[i], {i, 1, n - 1} ]/(n - 1) ]; Table[ a[n], {n, 1, 47} ]
Nest[Append[#, Last[#]+Floor[Mean[#]]]&, {1}, 46] (* James C. McMahon, Oct 11 2024 *)
PROG
(PARI) { for (n=1, 1000, if (n==1, s=0; a=1, s+=a; a+=s\(n - 1)); write("b065094.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009
(Haskell)
a065094 n = a065094_list !! (n-1)
a065094_list = 1 : f 1 1 1 where
f k s x = y : f (k + 1) (s + y) y where y = x + div s k
-- Reinhard Zumkeller, Apr 28 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
STATUS
approved