login
A065094
a(1) = 1, a(n+1) is the sum of a(n) and floor( arithmetic mean of a(1) ... a(n) ).
11
1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 106, 136, 173, 218, 273, 341, 423, 522, 641, 784, 955, 1158, 1399, 1685, 2023, 2421, 2889, 3437, 4079, 4828, 5701, 6716, 7893, 9257, 10834, 12655, 14754, 17169, 19944, 23128, 26775, 30948, 35716, 41157
OFFSET
1,2
COMMENTS
It seems that a(n) is asymptotic to C*BesselI(0,2*sqrt(n)) where C is a constant C = 0.44... and BesselI(b,x) is the modified Bessel function of the first kind. Can someone prove this?
Numerically, a(n) ~ c * exp(2*sqrt(n)) / n^(1/4), where c = 0.12571987512700920098166979884420897638511306007242... It follows that the constant above is equal to C = 0.445665353608456118285630970456186510059368576678... - Vaclav Kotesovec, Oct 12 2024
A241772(n) = a(n+1) - a(n) = (Sum_{1..n} a(k)) / n. - Reinhard Zumkeller, Apr 28 2014
FORMULA
a(1) = 1, a(n+1) = a(n) + floor((a(1) + a(2) + ... + a(n))/n).
EXAMPLE
a(5) = a(4) + floor((a(1)+a(2)+a(3)+a(4))/4) = 5 + floor((1+2+3+5)/4) = 5 + floor(11/4) = 5 + 2 = 7.
MAPLE
a[1] := 1: summe := 0: flip := 1: for j from 1 to 100 do: print (j, a[flip]); summe := summe + a[flip]: a[1-flip] := a[flip] + floor(summe/j): flip := 1-flip: od:
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[ Sum[ a[i], {i, 1, n - 1} ]/(n - 1) ]; Table[ a[n], {n, 1, 47} ]
Nest[Append[#, Last[#]+Floor[Mean[#]]]&, {1}, 46] (* James C. McMahon, Oct 11 2024 *)
PROG
(PARI) { for (n=1, 1000, if (n==1, s=0; a=1, s+=a; a+=s\(n - 1)); write("b065094.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009
(Haskell)
a065094 n = a065094_list !! (n-1)
a065094_list = 1 : f 1 1 1 where
f k s x = y : f (k + 1) (s + y) y where y = x + div s k
-- Reinhard Zumkeller, Apr 28 2014
CROSSREFS
Sequence in context: A035960 A288254 A023893 * A145728 A145786 A094023
KEYWORD
nonn,easy
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
STATUS
approved