login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145786
Expansion of q * chi(q^3) * chi(q^5) / (chi(q) * chi(q^15))^2 in powers of q where chi() is a Ramanujan theta function.
1
1, -2, 3, -5, 7, -10, 14, -20, 27, -36, 48, -63, 82, -106, 137, -175, 222, -280, 352, -439, 546, -676, 834, -1024, 1253, -1528, 1857, -2250, 2718, -3276, 3936, -4718, 5640, -6728, 8006, -9507, 11266, -13324, 15726, -18526, 21786, -25574, 29970, -35064, 40961
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of (eta(q) * eta(q^4) * eta(q^6) * eta(q^10) * eta(q^15) * eta(q^60))^2 / (eta(q^2)^4 * eta(q^3) * eta(q^5) * eta(q^12) * eta(q^20) * eta(q^30)^4) in powers of q.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = f(t) where q = exp(2 Pi i t).
a(n) = - A145728(n) unless n=0. a(n) = -(-1)^n * A123630(n).
Convolution inverse of A145788.
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
G.f. = q - 2*q^2 + 3*q^3 - 5*q^4 + 7*q^5 - 10*q^6 + 14*q^7 - 20*q^8 + 27*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x QPochhammer[ -x^3, x^6] QPochhammer[ -x^5, x^10] / (QPochhammer[ -x, x^2] QPochhammer[ -x^15, x^30])^2 , {x, 0, n}]; (* Michael Somos, Sep 03 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A) * eta(x^60 + A))^2 / (eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^5 + A) * eta(x^12 + A) * eta(x^20 + A) * eta(x^30 + A)^4), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 23 2008
STATUS
approved