login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145728
Expansion of f(-q^6) * f(-q^10) / (f(q) * f(q^15)) in powers of q where f() is a Ramanujan theta function.
4
1, -1, 2, -3, 5, -7, 10, -14, 20, -27, 36, -48, 63, -82, 106, -137, 175, -222, 280, -352, 439, -546, 676, -834, 1024, -1253, 1528, -1857, 2250, -2718, 3276, -3936, 4718, -5640, 6728, -8006, 9507, -11266, 13324, -15726, 18526, -21786, 25574, -29970, 35064
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Essentially a duplicate of A094023. - N. J. A. Sloane, Nov 04 2008
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q) * eta(q^4) * eta(q^6) * eta(q^10) * eta(q^15) * eta(q^60)) / (eta(q^2) * eta(q^30))^3 in powers of q.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 05 2015
a(n) = (-1)^n * A094023(n). Convolution inverse of A145727.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n/15)) / (2^(7/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
G.f. = 1 - q + 2*q^2 - 3*q^3 + 5*q^4 - 7*q^5 + 10*q^6 - 14*q^7 + 20*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q^6] QPochhammer[ q^10] / (QPochhammer[ -q] QPochhammer[ -q^15]), {q, 0, n}]; (* Michael Somos, Sep 05 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A) * eta(x^60 + A)) / (eta(x^2 + A) * eta(x^30 + A))^3, n))};
CROSSREFS
Sequence in context: A288254 A023893 A065094 * A145786 A094023 A123630
KEYWORD
sign
AUTHOR
Michael Somos, Oct 23 2008
STATUS
approved