OFFSET
1,14
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q) * eta(q^4) * eta(q^6) * eta(q^10) * eta(q^15) * eta(q^60) / (eta(q^2) * eta(q^3) * eta(q^5) * eta(q^12) * eta(q^20) * eta(q^30)) in powers of q.
Euler transform of a period 60 sequence.
G.f. is a period 1 Fourier series which satisfies f(-1 / (60 t)) = f(t) where q = exp(2 Pi i t).
G.f.: x * Product_{k>0} P(15, x^k) * P(60, x^k) where P(n, x) is the n-th cyclotomic polynomial.
EXAMPLE
q - q^2 - q^5 + q^6 - q^8 + q^10 + q^13 - 2*q^14 + q^15 + 2*q^16 - 3*q^17 + ...
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^10 + A) * eta(x^15 + A) * eta(x^60 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^12 + A) * eta(x^20 + A) * eta(x^30 + A)), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 23 2008
STATUS
approved