login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145724
Expansion of q * f(-q^20) / (f(q) * chi(-q^5)) in powers of q where f(), chi() are Ramanujan theta functions.
1
1, -1, 2, -3, 5, -6, 10, -13, 19, -25, 36, -46, 64, -82, 110, -139, 184, -231, 300, -375, 480, -596, 754, -930, 1165, -1428, 1772, -2162, 2662, -3230, 3952, -4773, 5800, -6976, 8430, -10093, 12136, -14476, 17320, -20585, 24526, -29044, 34466, -40684, 48095
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of eta(q) * eta(q^4) * eta(q^10) * eta(q^20) / (eta(q^2)^3 * eta(q^5)) in powers of q.
Euler transform of period 20 sequence [ -1, 2, -1, 1, 0, 2, -1, 1, -1, 2, -1, 1, -1, 2, 0, 1, -1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 20^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A147701.
Convolution inverse of A145723.
a(n) ~ -(-1)^n * 3^(1/4) * exp(Pi*sqrt(3*n/5)) / (2^(5/2) * 5^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jun 06 2018
EXAMPLE
G.f. = q - q^2 + 2*q^3 - 3*q^4 + 5*q^5 - 6*q^6 + 10*q^7 - 13*q^8 + 19*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^20] QPochhammer[ -q^5, q^5] / QPochhammer[ -q], {q, 0, n}]; (* Michael Somos, Sep 05 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^10 + A) * eta(x^20 + A) / (eta(x^2 + A)^3 * eta(x^5 + A)), n))};
CROSSREFS
Sequence in context: A039837 A039838 A064173 * A039843 A305937 A286097
KEYWORD
sign
AUTHOR
Michael Somos, Nov 10 2008
STATUS
approved