login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145723
Expansion of q^(-1) * f(q) * chi(-q^5) / f(-q^20) in powers of q where f(), chi() are Ramanujan theta functions.
4
1, 1, -1, 0, 0, -2, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 2, 0, 0, 2, 2, 0, 0, 0, -4, -1, 0, 0, 0, 2, 0, -1, 0, 0, 0, -2, 2, 0, 0, 3, 4, -2, 0, 0, -8, -3, 0, 0, 0, 5, 0, -2, 0, 0, 0, -3, 4, 0, 0, 6, 8, -2, 0, 0, -14, -4, 0, 0, 0, 8, 0, -3, 0, 0, 0, -6, 8, 0, 0
OFFSET
-1,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^3 * eta(q^5) / (eta(q) * eta(q^4) * eta(q^10) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 1, -2, 1, -1, 0, -2, 1, -1, 1, -2, 1, -1, 1, -2, 0, -1, 1, -2, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 20^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A145722.
a(4*n + 2) = a(5*n + 2) = a(5*n + 3) = 0.
a(4*n) = A138527(n). a(4*n + 1) = - A147699(n).
Convolution inverse of A145724.
EXAMPLE
G.f. = 1/q + 1 - q - 2*q^4 - q^5 + q^9 - q^15 + 2*q^16 + 2*q^19 + 2*q^20 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q QPochhammer[ -q] QPochhammer[ q^5, q^10] / QPochhammer[ q^20], {q, 0, n}]; (* Michael Somos, Sep 05 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A) * eta(x^20 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 06 2008
STATUS
approved