OFFSET
-1,6
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^3 * eta(q^5) / (eta(q) * eta(q^4) * eta(q^10) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 1, -2, 1, -1, 0, -2, 1, -1, 1, -2, 1, -1, 1, -2, 0, -1, 1, -2, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 20^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A145722.
a(4*n + 2) = a(5*n + 2) = a(5*n + 3) = 0.
Convolution inverse of A145724.
EXAMPLE
G.f. = 1/q + 1 - q - 2*q^4 - q^5 + q^9 - q^15 + 2*q^16 + 2*q^19 + 2*q^20 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q QPochhammer[ -q] QPochhammer[ q^5, q^10] / QPochhammer[ q^20], {q, 0, n}]; (* Michael Somos, Sep 05 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A) * eta(x^20 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 06 2008
STATUS
approved