The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117886 Expansion of q^(-2/3)eta(q)eta(q^10)^2/eta(q^5) in powers of q. 1
 1, -1, -1, 0, 0, 2, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, -2, 1, -1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, -2, 0, 2, 0, 0, 0, 0, -2, 0, 0, 1, 1, 0, 0, 0, -2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(-q) * psi(q^5) in powers of q where f(),psi() are Ramanujan theta functions. Euler transform of period 10 sequence [ -1, -1, -1, -1, 0, -1, -1, -1, -1, -2, ...]. G.f.: Product_{k>0} (1-x^k)*(1-x^(5k))*(1+x^(5k))^2. MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-2/3)* eta[q]*eta[q^10]^2/eta[q^5], {q, 0, 50}], q] (* G. C. Greubel, Apr 17 2018 *) PROG (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^10+A)^2/eta(x^5+A), n))} (PARI) q='q+O('q^99); Vec(eta(q)*eta(q^10)^2/eta(q^5)) \\ Altug Alkan, Apr 18 2018 CROSSREFS Sequence in context: A343870 A339070 A077655 * A145723 A085977 A288424 Adjacent sequences:  A117883 A117884 A117885 * A117887 A117888 A117889 KEYWORD sign AUTHOR Michael Somos, Oct 13 2006; corrected Jul 29 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 01:24 EST 2021. Contains 349396 sequences. (Running on oeis4.)