The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A147699 Expansion of f(x) * f(x^5) / phi(-x^10)^2 in powers of x where f(), phi() are Ramanujan theta functions. 6
 1, 1, -1, 0, 0, 0, 1, -2, 0, 0, 2, 3, -5, 0, 0, 2, 4, -8, 0, 0, 5, 8, -14, 0, 0, 6, 12, -22, 0, 0, 13, 21, -36, 0, 0, 16, 30, -54, 0, 0, 28, 48, -83, 0, 0, 38, 68, -120, 0, 0, 60, 102, -176, 0, 0, 80, 143, -250, 0, 0, 122, 207, -356, 0, 0, 162, 284, -494, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-1/4) * eta(q^2)^3 * eta(q^20) / (eta(q) * eta(q^4) * eta(q^5) * eta(q^10)) in powers of q. Euler transform of period 20 sequence [ 1, -2, 1, -1, 2, -2, 1, -1, 1, 0, 1, -1, 1, -2, 2, -1, 1, -2, 1, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (5/4)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A147702. a(5*n + 2) = a(5*n + 3) = 0. a(n) = A138532(2*n + 1). a(5*n + 1) = A145722(n). a(5*n) = A261866(n). a(5*n + 2) = - A261526(n). - Michael Somos, Sep 03 2015 EXAMPLE G.f. = 1 + x - x^2 + x^6 - 2*x^7 + 2*x^10 + 3*x^11 - 5*x^12 + 2*x^15 + ... G.f. = q + q^5 - q^9 + q^25 - 2*q^29 + 2*q^41 + 3*q^45 - 5*q^49 + 2*q^61 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^10]^2, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^20 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A)), n))}; CROSSREFS Cf. A138532, A145722, A147702, A261526, A261866. Sequence in context: A327950 A364806 A024870 * A250023 A151669 A115509 Adjacent sequences: A147696 A147697 A147698 * A147700 A147701 A147702 KEYWORD sign AUTHOR Michael Somos, Nov 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 3 20:04 EDT 2023. Contains 365870 sequences. (Running on oeis4.)