OFFSET
0,8
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * eta(q^2)^3 * eta(q^20) / (eta(q) * eta(q^4) * eta(q^5) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ 1, -2, 1, -1, 2, -2, 1, -1, 1, 0, 1, -1, 1, -2, 2, -1, 1, -2, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (5/4)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A147702.
a(5*n + 2) = a(5*n + 3) = 0.
EXAMPLE
G.f. = 1 + x - x^2 + x^6 - 2*x^7 + 2*x^10 + 3*x^11 - 5*x^12 + 2*x^15 + ...
G.f. = q + q^5 - q^9 + q^25 - 2*q^29 + 2*q^41 + 3*q^45 - 5*q^49 + 2*q^61 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^10]^2, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^20 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 10 2008
STATUS
approved