login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147699
Expansion of f(x) * f(x^5) / phi(-x^10)^2 in powers of x where f(), phi() are Ramanujan theta functions.
6
1, 1, -1, 0, 0, 0, 1, -2, 0, 0, 2, 3, -5, 0, 0, 2, 4, -8, 0, 0, 5, 8, -14, 0, 0, 6, 12, -22, 0, 0, 13, 21, -36, 0, 0, 16, 30, -54, 0, 0, 28, 48, -83, 0, 0, 38, 68, -120, 0, 0, 60, 102, -176, 0, 0, 80, 143, -250, 0, 0, 122, 207, -356, 0, 0, 162, 284, -494, 0, 0
OFFSET
0,8
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/4) * eta(q^2)^3 * eta(q^20) / (eta(q) * eta(q^4) * eta(q^5) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ 1, -2, 1, -1, 2, -2, 1, -1, 1, 0, 1, -1, 1, -2, 2, -1, 1, -2, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (5/4)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A147702.
a(5*n + 2) = a(5*n + 3) = 0.
a(n) = A138532(2*n + 1). a(5*n + 1) = A145722(n).
a(5*n) = A261866(n). a(5*n + 2) = - A261526(n). - Michael Somos, Sep 03 2015
EXAMPLE
G.f. = 1 + x - x^2 + x^6 - 2*x^7 + 2*x^10 + 3*x^11 - 5*x^12 + 2*x^15 + ...
G.f. = q + q^5 - q^9 + q^25 - 2*q^29 + 2*q^41 + 3*q^45 - 5*q^49 + 2*q^61 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^10]^2, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^20 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 10 2008
STATUS
approved