OFFSET
45,1
COMMENTS
This sequence is based on A359187, and was suggested by Thomas Scheuerle on December 19 2022.
For a detailed explanation of the fact that Re((-sqrt(2))^^9) is surprisingly close to 1, because Re((-sqrt(2))^^8) is small at about 6.491878...*10^-46, see Links (i.e., the answer provided by the MathOverflow user Saúl RM).
LINKS
MathOverflow, The 9th tetration of -sqrt(2).
FORMULA
Equals 1/(Re((-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))) - 1).
Equals 1/(A359187 - 1).
EXAMPLE
200233261116755784266797207108302997814593266.829345153326335489937486...
MAPLE
Digits:=100: 1: for i from 1 to 9 do (-sqrt(2))^% end do: printf("%.55f", 1/Re(evalf[150](%-1))); # Michal Paulovic, Aug 20 2023
MATHEMATICA
x=1; Do[x=(-Sqrt[2])^x, {9}]; x=1/Re[N[x-1, 100]]; RealDigits[x, 10, 100][[1]] (* Michal Paulovic, Aug 20 2023 *)
PROG
(PARI) default(realprecision, 100); x=1; for(i=1, 9, x=(-sqrt(2))^x); 1/real(x-1) \\ Michal Paulovic, Aug 20 2023
CROSSREFS
KEYWORD
AUTHOR
Marco Ripà and Thomas Scheuerle, Aug 08 2023
STATUS
approved