login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364805
a(n) is the smallest number k such that the number of distinct prime divisors of the n numbers from k through k+n-1 are in nondescending order.
1
1, 1, 1, 1, 1, 1, 141, 141, 211, 211, 82321, 82321, 526093, 526093, 526093, 526093, 127890361, 127890361
OFFSET
1,7
COMMENTS
Smallest initial number k of n consecutive numbers satisfying omega(k) <= omega(k+1) <= ... <= omega(k+n-1).
EXAMPLE
a(9) = 211 = a(10) as omega(211) = 1 < omega(212) = omega(213) = omega(214) = omega(215) = omega(216) = omega(217) = omega(218) = omega(219) = 2 < omega(220) = 3.
MATHEMATICA
k = 1; Do[While[t = Table[PrimeNu[i], {i, k, k + n - 1}]; t != Sort[t], k++]; Print[k], {n, 1, 16}]
PROG
(PARI) a(n) = my(k=1, list=List(vector(n, i, omega(i)))); while (vecsort(list) != list, listpop(list, 1); k++; listput(list, omega(k+n-1))); k; \\ Michel Marcus, Aug 14 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Ilya Gutkovskiy, Aug 08 2023
EXTENSIONS
a(17)-a(18) from Michel Marcus, Aug 14 2023
STATUS
approved