

A364804


a(n) is the smallest number k such that the number of prime divisors (counted with multiplicity) of the n numbers from k through k+n1 are in nondescending order.


1



1, 1, 1, 1, 121, 121, 2521, 2521, 162121, 460801, 23553169, 23553169, 244068841, 913535283
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Smallest initial number k of n consecutive numbers satisfying bigomega(k) <= bigomega(k+1) <= ... <= bigomega(k+n1).


LINKS



EXAMPLE

a(5) = 121 = a(6) as bigomega(121) = bigomega(122) = bigomega(123) = 2 < bigomega(124) = bigomega(125) = 3 < bigomega(126) = 4.


MATHEMATICA

k = 1; Do[While[t = Table[PrimeOmega[i], {i, k, k + n  1}]; t != Sort[t], k++]; Print[k], {n, 1, 10}]


PROG

(PARI) a(n) = my(k=1, list=List(vector(n, i, bigomega(i)))); while (vecsort(list) != list, listpop(list, 1); k++; listput(list, bigomega(k+n1))); k; \\ Michel Marcus, Aug 14 2023


CROSSREFS



KEYWORD

nonn,more


AUTHOR



EXTENSIONS



STATUS

approved



