login
A359187
Decimal expansion of the real part of (-sqrt(2))^^9, where ^^ indicates tetration or hyper-4 (e.g., 2^^4 = 2^(2^(2^2))).
4
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 4, 1, 7, 5, 2, 6, 5, 5, 0, 1, 4, 7, 5, 0, 5, 2, 6, 9, 1, 3, 4, 6, 3, 9, 1, 3, 5, 4, 1, 2, 8, 6, 7, 6, 7, 4, 5, 4, 0
OFFSET
1,46
COMMENTS
This is the real part of (-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2)).
For a detailed explanation of the fact that a(2) = a(3) = a(4) = ... = a(45), see Links (i.e., the answer provided by the MathOverflow user Saúl RM).
EXAMPLE
1.000000000000000000000000000000000000000000004994175...
MAPLE
b:= n-> `if`(n=0, 1, (-sqrt(2))^b(n-1)):
evalf(Re(b(9)), 130); # Alois P. Heinz, Nov 24 2023
MATHEMATICA
First[RealDigits[Re[Nest[(-Sqrt[2])^#&, -Sqrt[2], 8]], 10, 100]] (* Paolo Xausa, Oct 24 2023 *)
PROG
(PARI) localprec(100); real((-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))^(-sqrt(2))) \\ Michel Marcus, Dec 20 2022
CROSSREFS
KEYWORD
easy,cons,nonn
AUTHOR
Marco Ripà, Dec 19 2022
STATUS
approved