login
A196516
Decimal expansion of the number x satisfying x*e^x=3.
5
1, 0, 4, 9, 9, 0, 8, 8, 9, 4, 9, 6, 4, 0, 3, 9, 9, 5, 9, 9, 8, 8, 6, 9, 7, 0, 7, 0, 5, 5, 2, 8, 9, 7, 9, 0, 4, 5, 8, 9, 4, 6, 6, 9, 4, 3, 7, 0, 6, 3, 4, 1, 4, 5, 2, 9, 3, 2, 8, 7, 1, 5, 8, 3, 3, 1, 6, 6, 4, 9, 0, 5, 0, 4, 4, 4, 4, 4, 2, 9, 5, 7, 8, 8, 5, 6, 7, 8, 6, 6, 6, 8, 2, 2, 4, 3, 4, 6, 7, 4
OFFSET
1,3
EXAMPLE
1.049908894964039959988697070552897904589...
MATHEMATICA
Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A030175 *)
t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196515 *)
t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196516 *)
t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196517 *)
t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196518 *)
t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196519 *)
RealDigits[LambertW[3], 10, 50][[1]] (* _G. C. Greubel-, Nov 16 2017 *)
PROG
(PARI) lambertw(3) \\ G. C. Greubel, Nov 16 2017
CROSSREFS
Sequence in context: A145521 A230979 A145431 * A021671 A359187 A203140
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 03 2011
STATUS
approved