login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196514
Partial sums of A100381.
1
0, 4, 28, 124, 444, 1404, 4092, 11260, 29692, 75772, 188412, 458748, 1097724, 2588668, 6029308, 13893628, 31719420, 71827452, 161480700, 360710140, 801112060, 1769996284, 3892314108, 8522825724, 18589155324, 40399536124, 87509958652
OFFSET
0,2
COMMENTS
Like any sequence with a linear recurrence, this has a Pisano period length modulo any k >= 1. The period lengths for this sequence are (modulo k >= 1) 1, 1, 6, 1, 20, 6, 21, 1, 18, 20, 110, 6, 156, 21, 60, 1, 136, 18, 342, 20, ....
REFERENCES
Jolley, Summation of Series, Dover (1961), eq (53) page 10.
FORMULA
G.f.: 4*x / ( (x-1)*(2*x-1)^3 ).
a(n) = (n^2 - n + 2)*2^(n+1) - 4 = 4*A055580(n-1).
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4); a(0)=0, a(1)=4, a(2)=28, a(3)=124. - Harvey P. Dale, Jan 12 2016
MATHEMATICA
Table[2^n*Binomial[n, 2], {n, 1, 27}] // Accumulate (* Jean-François Alcover, Jun 24 2013 *)
LinearRecurrence[{7, -18, 20, -8}, {0, 4, 28, 124}, 30] (* Harvey P. Dale, Jan 12 2016 *)
PROG
(Magma) [(n^2-n+2)*2^(n+1)-4 : n in [0..30]]; // Vincenzo Librandi, Oct 05 2011
(PARI) a(n)=(n^2-n+2)<<(n+1)-4 \\ Charles R Greathouse IV, Oct 05 2011
CROSSREFS
Sequence in context: A318011 A328685 A212900 * A249629 A131459 A231581
KEYWORD
nonn,easy,less
AUTHOR
R. J. Mathar, Oct 03 2011
STATUS
approved